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A new spectral model for turbulent flows with stable stratification is presented. The model is based
on a quasi-Gaussian mapping of the velocity and temperature fields using the Langevin equations
and employs a recursive procedure of small-scale mode elimination that results in a coupled system
of differential equations for effective, horizontal and vertical, viscosities and diffusivities. With
increasing stratification, the vertical viscosity and diffusivity are suppressed while their horizontal
counterparts are enhanced thus explicitly accounting for the anisotropy introduced by stable
stratification. The new model is used to derive various spectral characteristics of stably stratified
turbulent flows. It accounts for energy accumulation in the horizontal components at the expense of
the energy reduction in the vertical component. The scale elimination algorithm explicitly accounts
for the combined effect of turbulence and internal waves. A modified dispersion relation for internal
waves, a relationship for internal wave frequency shift, and a threshold criterion for internal wave
generation in the presence of turbulent scrambling are derived. It is shown how the model can be
utilized to derive parameters needed for Reynolds-averaged Navier-Stokes modeling. Implemented
in the K-� format, the new model produces results that agree very well with the observational data
on stably stratified atmospheric boundary layers and that are difficult to obtain using traditional
two-equation turbulence modeling. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2009010�
I. INTRODUCTION

Turbulent flows with stable stratification are common in
nature. Circulations of planetary and terrestrial atmospheres,
oceans, and lakes are all examples of such flows. In a stably
stratified environment, the gravity force leads to existence of
internal gravity waves, and, in addition, to anisotropization
of the dynamical and transport properties of the flow field.
Understanding and predicting of such flows are of consider-
able theoretical and practical importance; extensive research
has yielded a large volume of experimental, observational,
descriptive, heuristic, and computational information over
the years. To characterize different flow regimes emerging in
stably stratified flows, numerous spatial and temporal scales
and nondimensional parameters have been introduced and
various heuristic, semiempirical, and analytical theories have
been developed.1–13 However, present understanding of sta-
bly stratified turbulence is far from complete. The character-
ization of data collected in various flow regimes often ap-
pears inconsistent and confusing reflecting the diversity of
the environmental conditions �laboratory facilities, atmo-
spheric boundary layers, oceanic mixed layers, lakes, strato-
sphere and troposphere, low Reynolds number computer
simulations, etc.�. There exists an unfortunate disconnect be-
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tween models and approaches used in different fields, such as
analytical theories, boundary layer meteorology, high-
altitude meteorology, and physical oceanography. In this pa-
per, we attempt to construct a theory of stably stratified tur-
bulence which is reasonably proximate to the first principles
and at the same time leads to predictions that can be directly
used in these diverse practical applications.

Technically speaking, one of the central problems of
analytical theories of turbulence is the treatment of nonlinear
terms in the governing equations. Within the conventional,
perturbative nonlinearity treatment, a straightforward scaling
analysis suggests that a proper expansion parameter should
be the Reynolds number Re that measures the ratio of the
nonlinear and viscous terms. Notoriously, Re based upon the
molecular viscosity and characteristic velocity and length
scales of large energy containing eddies is very large and the
corresponding expansion in powers of Re is strongly diver-
gent. A class of analytical theories of turbulence exploits an
expansion in powers of the effective Reynolds number
built upon the effective, rather than molecular,
viscosity.14,15 Theories that employ such expansions have
been coined renormalized perturbation theories, or RPT.15

One of the important vehicles of RPT is the Langevin equa-
tion that arises in the lowest perturbative order. In the case of

neutral stratification, the Langevin equation is
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ui��,k� = G��,k�f i��,k� , �1�

where � and k are the Fourier frequency and wave number,
G�� ,k� is the Green function, and f i�� ,k� is a random force
stirring the mode ui. Physically, this modal forcing is the
result of excitation of a given mode by all other modes due
to nonlinear interactions. It is not related directly to the
large-scale forcing that drives the system; instead, it quanti-
fies the effect of this forcing upon the mode ui transmitted by
interaction of all other modes. The Green function, on the
other hand, includes the effective viscosity and describes the
damping of the mode ui�� ,k� by nonlinear interaction with
all other modes. Heuristically, in terms of the Kolmogorov
cascade, the Langevin equation provides twofold character-
ization of the nonlinear interactions: the damping term in the
Green function represents the energy transfer from a mode
with a wave number k to higher wave-number modes
whereas the random forcing f i�� ,k� accounts for the energy
transfer to the given mode from lower wave-number modes.

While the effective viscosity can be evaluated within
RPT, the forcing f i�� ,k� has defeated all attempts of theo-
retical derivation so far. In this paper, we postulate that,
based upon transparent physical reasoning, the modal forcing
should be taken as Gaussian and the amplitude of its corre-
lation function is proportional to the rate of the large-scale
energy input. The latter assumption enforces correct energy
balance between forcing and damping of every Fourier mode
at all times. In other words, the Langevin equations provide
a device that facilitates the replacement of the original non-
linear Navier-Stokes equation by a system of linear, forced,
stochastic equations in which the energy budget is systemati-
cally adjusted for every Fourier mode.16 The replacement of
the fully nonlinear Navier-Stokes equations by the Langevin
equations can be viewed as a mapping of the original flow
field onto a quasi-Gaussian field under the constraints of in-
compressibility and conservation of the modal energy flux.

The theory presented below in this paper belongs in the
RPT family. It seeks to establish a self-consistent coarse-
graining procedure yielding the effective viscosity and diffu-
sivity for a stably stratified turbulent flow field. This proce-
dure utilizes the key fact that for the modes adjacent to the
dissipation range, Re is O�1�. Using the Langevin equation
�1�, small shells of the velocity and temperature modes can
be ensemble averaged and excluded from the governing
equations. The shell elimination procedure generates small
corrections to the viscosity and diffusivity that account for
the transport processes taking place on the eliminated scales.
As a result, the effective dissipation wave number � de-
creases while the effective viscosity and diffusivity increase.
The effective Re built upon the scales pertinent to the new
value of � is again O�1� such that the procedure can be
repeated and another small shell of modes can be eliminated
leading to further decrease of � and increase of the effective
viscosity and diffusivity. This process can be continued until
any predetermined wave number � is attained. The effective,
�-dependent viscosities and diffusivities generated in this
process can be related to subgrid scale �SGS� viscosities and
diffusivities in large eddy simulations �LES� in which � is

proportional to the inverse grid resolution.
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Summarizing, let us highlight the four features of the
present approach: �i� the theory aims at achieving a coarse-
grained description of stably stratified turbulent flow field via
successive elimination of small shells of modes in the vicin-
ity of the dynamic dissipation cutoff wave number � where
Re is O�1�; �ii� the Langevin equation is invoked for the
modes designated for elimination; �iii� the forcing in the
Langevin equation is postulated to be Gaussian and its am-
plitude is related to the rate of energy transfer through the
given mode; and �iv� the modes are eliminated via ensemble-
averaging whose by-products are the decrease of � �i.e., the
incremental coarse graining of the system� and the increase
of the effective viscosity and diffusivity. The assumptions
involved in �iii� are critical because they lay the mathemati-
cal foundation sufficient for the development of a self-
consistent model.

It is understood that the hypothesis of the Gaussianity is
an approximation that, at best, yields good results for the
second-order statistical moments. The deviations from Gaus-
sianity affect higher-order moments. Since the effective vis-
cosity and diffusivity are in the main focus of the present
theory, the Gaussianity assumption is expected to yield rea-
sonably accurate results.

The recursive procedure of small-scale elimination was
formally introduced in Ref. 17 for systems with small expan-
sion parameter. Later, it was applied to fluid turbulence in the
framework of the renormalization group �RG� theory by
Yakhot and Orszag �YO�.18,19 One of the important achieve-
ments of the YO theory of turbulence was establishing of the
relationship between the amplitude of the modal forcing
f��� ,k� and an observable parameter, the rate of the energy
injection on the large scales �equal to the rate of the viscous
dissipation in steady state�. The YO results were shown to be
in good agreement with basic experimental, observational,
and numerical data for neutrally stratified turbulence.18,19

Another attractive feature of the YO theory is that it trans-
lates into transparent methodology using which the analytical
results can be implemented in models designed for practi-
cally important applications, such as the K-� models.19 It
needs to be mentioned that the original YO theory had sev-
eral problematic foundational issues widely discussed in the
literature. Some of these issues were clarified in Ref. 20
without affecting the results of the YO theory. Due to the
advantages of this theory, the approach based upon the
Gaussian approximation for the modal forcing and the pro-
cedure of recursive scale elimination has been adopted in the
present study. Note, however, that there exist fundamental
differences between the present and YO theories. The most
critical distinction is that the former is not a RG theory in the
theoretical physics understanding, i.e., it does not involve the
rescaling and fixed-point arguments, and the modal forcing is
not derived from the first principles. Instead, the scale invari-
ance is not implied and the properties of the modal forcing
are postulated. In this sense, the present theory is nothing
else but a quasi-Gaussian spectral closure model of the RPT
family. To reflect its main features, this model will be re-
ferred to as a quasinormal scale elimination �QNSE� model.
By virtue of utilizing effective viscosity in modal equations,

14
QNSE is an eddy-damped model. The main difference that
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sets the QNSE apart from other quasinormal models �such as
eddy-damped, quasinormal Markovian �EDQNM�,14,21

EDQNM2,4,22,23 EDQNM3,24 etc.� is that the former em-
ploys a self-contained algorithm of successive small-scale
mode elimination while the latter operate with complicated
integrodifferential equations that involve all modes. As a re-
sult, the QNSE model is more amenable to analytical treat-
ment than other models, particularly in flows with strong
anisotropy and waves �note, however, that EDQNM2 and
EDQNM3 do include anisotropy and waves�.

The aforementioned simplicity of the QNSE model
makes it possible to obtain insightful analytical results. For
instance, a systematic process of small-scale elimination for
stably stratified flow leads to the emergence of vertical and
horizontal eddy viscosities and diffusivities thus reflecting
the anisotropy introduced by stable stratification. Those eddy
viscosities and diffusivities as well as various one-
dimensional spectra can be calculated analytically in the case
of weak stratification. The method also yields the dispersion
relation for internal waves in the presence of turbulence and
allows one to explore wave contribution to turbulence char-
acteristics. The analysis reveals that at large wave numbers,
turbulent scrambling overwhelms internal wave generation
leading to the suppression of the wave regime. A correspond-
ing spectral threshold criterion of internal wave generation in
the presence of turbulence will be derived in Sec. X.

The paper is organized in the following fashion. Section
II provides the outline of the basic assumptions and methods
of the QNSE model. The relation between the Navier-Stokes
and the Langevin equations underlying the idea of the quasi-
Gaussian mapping is explained. Then we use successive
small-scale mode elimination to derive two main equations
that will eventually yield expressions for the effective vis-
cosities and diffusivities defined in Sec. III. Sections IV and
V provide detailed calculation of these effective viscosities
and diffusivities while Sec. VI analyzes their behavior in the
asymptotic case of weak stable stratification. In Sec. VII, a
relationship between the forcing amplitude and the rate of
the viscous dissipation � is derived. This relationship allows
one to express the effective turbulent transport coefficients in
terms of the observable parameter �. In Sec. VIII, the effec-
tive viscosities and diffusivities are characterized in terms of
the Ozmidov wave number. Sections IX and X deal with the
dispersion relation for internal waves in the presence of tur-
bulence, turbulence-induced internal wave frequency shift,
and the criterion of internal wave generation in the presence
of turbulence. Section XI discusses various spectral charac-
teristics of stably stratified turbulence. Section XII seeks to
validate the theoretical derivations via comparisons with di-
rect numerical simulations �DNS�, laboratory, and field data
and then to provide further validation of the QNSE model by
implementing it in the K-� format and applying the emerging
K-� model to simulate stably stratified atmospheric boundary
layers. Finally, Sec. XIII provides discussion and conclu-

sions.
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II. MODEL OUTLINE

Consider fully three-dimensional, incompressible turbu-
lent flow with externally imposed, homogeneous, stabilizing
vertical gradient of the mean potential temperature �. The
flow occupies an infinite domain and is governed by a sys-
tem of the momentum �Navier-Stokes�, temperature, and
continuity equations in the Boussinesq approximation,

�u

�t
+ �u · ��u − �gTê3 = �0�

2u −
1

�
� P + f0, �2�

�T

�t
+ �u · ��T +

d�

dz
u3 = �0�

2T , �3�

� · u = 0. �4�

Here, P is the pressure, � is the constant reference density, �0

and �0 are the molecular viscosity and diffusivity, respec-
tively, � is the thermal-expansion coefficient, g is the accel-
eration due to gravity directed downwards, and T is the fluc-
tuation of �. The external solenoidal force f0 mimics the
effect of large-scale instabilities and maintains turbulence in
a statistically steady state. Note that the temperature equation
�3� does not involve a separate forcing implying that the
temperature fluctuations are excited by the velocity fluctua-
tions. In the spectral domain bounded by the viscous dissi-
pation �or Kolmogorov� wave number kd= �� /�0

3�1/4 �� is the
rate of the viscous dissipation; kd→	 in the limit of an in-
finite Reynolds number�, space-time Fourier transforms of
the velocity and temperature fields are

ui�x,t� =
1

�2
�4�
k�kd

dk� d�ui��,k�exp�i�kx − �t�� ,

�5�

T�x,t� =
1

�2
�4�
k�kd

dk� d�T��,k�exp�i�kx − �t�� .

�6�

This yields

u��k̂�k� = 0 �7�

in place of �4� and

− i�u��k̂� + ik
� u��q̂�u
�k̂ − q̂�
dq̂

�2
�4 − �gT�k̂���3

= − ik�

P�k̂�
�

− �0k2u��k̂� + f�
0�k̂� �8�

in place of �2�, where k̂= �� ,k�, q̂= �� ,q�, and f�
0�k̂� is the

Fourier transform of the external forcing. One of the advan-
tages of spectral representation of the equations of motion is
its ability to eliminate the pressure term from the equations.
Evaluate the pressure term by taking the divergence of �8�

using the continuity equation �7�,
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−
k
k�

k2 � u
�q̂�u��k̂ − q̂�
dq̂

�2
�4 −
ik3

k2 �gT�k̂� =
P�k̂�

�
, �9�

where the standard nonlinear term on the left side of �9� is
now complemented by a new term that reflects the contribu-
tion of density stratification. Substituting Eq. �9� in �8� obtain

G0
−1��,k�u��k̂� = f�

0�k̂� + �gT�k̂�P3��k�

−
i

2
P�
��k� � u
�q̂�u��k̂ − q̂�

dq̂

�2
�4 ,

�10�

where

Pij�k� = �ij − kikj/k
2, �11�

Plmn�k� = kmPln�k� + knPlm�k� , �12�

G0
−1��,k� = − i� + �0k2, �13�

G0�� ,k� is the “bare” Green function, and �ij is the Kro-
necker � symbol.

In the case of neutral stratification, Eq. �10� takes the
canonical form

u��k̂� = G0��,k�f�
0�k̂� −

i

2
G0��,k�P�
��k�

�� u
�q̂�u��k̂ − q̂�
dq̂

�2
�4 . �14�

When stratification is present, Eq. �10� can be still reduced to
the canonical form �14� by eliminating the temperature term
using Fourier-transformed Eq. �3�,

T�k̂� = GT0�k̂�fT�k̂� − iGT0�k̂�k�� u��q̂�T�k̂ − q̂�
dq̂

�2
�4 ,

�15�

where

fT�k̂� = −
d�

dz
u3�k̂� �16�

assumes the role of the stochastic forcing and GT0�k̂� is the
bare temperature Green function given by

GT0��,k� = �− i� + �0k2�−1. �17�

Now, introduce a formal solution to Eq. �15� as a temperature
Langevin equation,

T�k̂� = GT�k̂�fT�k̂� , �18�

where GT�k̂� involves an effective diffusivity. Substituting
Eq. �18� in �10�, derive the canonical form of the velocity

equation,
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u��k̂� = G��
0 �k̂�f�

0�k̂� −
i

2
G��

0 �k̂�P�
��k�

�� u
�q̂�u��k̂ − q̂�
dq̂

�2
�4 , �19�

where the bare velocity Green function, G��
0 �k̂�, possesses a

nondiagonal tensorial structure,

G��
0 ��,k� = G0��,k����� + N2GT��,k�

�G0��,k�P�3�k���3�−1. �20�

Here, N���g�d� /dz��1/2 is the buoyancy or Brunt-Väisälä
frequency. The matrix on the right side of �20� can be in-
verted analytically for an arbitrary N yielding

G��
0 ��,k� = G0��,k����� + A��,k�P�3�k���3� , �21�

where

A��,k� = −
N2

G0
−1��,k�GT

−1��,k� + N2P33�k�
. �22�

The difference between Eqs. �14� and �19� is in the tensorial
nature of the velocity Green function brought about by the
effect of stable stratification. Accordingly, the Langevin
equation �1� also acquires tensorial structure. Let us empha-
size that the formal solution �18� made it possible to reduce
Eq. �10� to the canonical form �19� which is self-contained

for the velocity. The effective diffusivities in GT�k̂� will be
found simultaneously with effective viscosities in the process
of coarse graining. Since, as evident from Eq. �20�,
G��

0 �� ,k� involves GT�k̂�, it is anticipated that equations for
the effective viscosities and diffusivities form a coupled sys-
tem. Sections II A–II D will describe a series of steps for
solving that coupled system and calculating effective viscosi-
ties and diffusivities in the framework of the QNSE model.

A. Dynamic dissipation cutoff wave number

One of the key parameters here will be the dynamic
dissipation cutoff �. This parameter is utilized in the scale
elimination procedure aimed at accomplishing ensemble av-
eraging of a small �� shell of modes in the vicinity of � and
purge them from Eqs. �15� and �19�. As a result, the effective
dissipation wave number moves from � to its new value,
�−��, while the viscosity and diffusivity gain O���� cor-
rections �� and ��, respectively. The effective Re based
upon the parameters in the vicinity of �−�� is, again, O�1�,
such that a new �� shell of modes can be ensemble aver-
aged and purged at the next iteration, and so on. The process
of successive scale elimination starts at �=kd and can be
continued until any predetermined wave number kc is at-
tained. When kc is related to the numerical grid resolution in
LES, ��kc� is the corresponding SGS viscosity. For conve-
nience, all equations from now on will be understood as
formulated in terms of � rather than kd and accordingly, the
subscript and superscript “0” will be omitted from all the
Green functions implying the use of the effective viscosity

and diffusivity, ���� and ����, respectively.
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B. “Slow” and “fast” modes

Development of a systematic procedure of successive
small-scale elimination requires differentiation between the
modes designated for purging and the rest of the modes. As
elaborated earlier, � is the dynamic dissipation cutoff and
�� is a thin shell, �� /��1. Define the following domains:
D�= �0,�−���, D�= ��−�� ,��, and D= �0,��
=D��D�. Finally, the “slow” �u� ,T�� and “fast” �u� ,T��
velocity and temperature modes can be defined in such a way
that k�D� for u� and k�D� for u�. The subdivision of
modes into slow and fast is equivalent to employing a sharp
cutoff filter about �−�� which can be defined in terms of
the Heaviside step-function �,25

���k� = �1 if k � D�,

0 if k � D�,
� �23�

and

���k� = �0 if k � D�,

1 if k � D�.
� �24�

Then, the slow and fast velocity modes can be represented as

u�
���,k� = ���k�u���,k� , �25�

u�
���,k� = ���k�u���,k� , �26�

and a vector u� can be decomposed into a sum, u�=u�
�

+u�
�.

Similarly, the slow and fast temperature modes admit the
following representation:

T���,k� = ���k�T��,k� , �27�

T���,k� = ���k�T��,k� , �28�

and T=T�+T�.
The nonlinearities in Eqs. �19� and �15� couple the fast

and slow modes. Using Eq. �19�, write down expressions for
either u�

��� ,k� or u�
��� ,k�,

u��k̂� = G���k̂�f�
0 −

i

2
G���k̂�P�
��k� � �u


��q̂�u�
��k̂ − q̂�

+ 2u

��q̂�u�

��k̂ − q̂� + u

��q̂�u�

��k̂ − q̂��
dq̂

�2
�4 .

�29�

Similarly, using Eq. �15�, one can write down expressions for
either T��� ,k� or T��� ,k�,

T�k̂� = GT�k̂�fT�k̂� − iGT�k̂�k�� �u�
��q̂�T��k̂ − q̂�

+ u�
��q̂�T��k̂ − q̂� + u�

��q̂�T��k̂ − q̂�

+ u�
��q̂�T��k̂ − q̂��

dq̂

�2
�4 . �30�

For k�D� and k�D�, Eqs. �29� and �30� describe u�
� ,T�

and u�
� ,T�, respectively. Equation for u� contains u� terms

in the second �referred to as a cross term� and third terms of
� �
the integrand. Similarly, the equation for T contains T

ownloaded 23 Aug 2005 to 131.247.136.136. Redistribution subject to
and/or u� terms in the second, third, and fourth terms of the
integrand. The fast modes are eliminated from the equations
for u� and T� by ensemble averaging with simultaneous
adjustment of the effective viscosity and diffusivity and
shrinking the spectral domain from D to D�.

C. “Bare” versus “dressed” forces

Recall that the Langevin equations for the velocity,

u��k̂� = G���k̂�f��k̂� , �31�

involve the “dressed,” or effective, force f��k̂� that accounts
for the excitation of a single mode k by all other modes due
to nonlinear interactions15,16,19,26 and is quite different from

the “bare” force f�
0�k̂� that mimics the effect of large-scale

instabilities and provides forcing that maintains turbulence.
Numerous attempts to derive the dressed force from the first
principles have failed so far15,27 such that it has to be postu-
lated. Let us now highlight the subtle connections between
the bare and the postulated dressed forces.

In the spirit of the Kolmogorov theory of turbulence, it is
usually assumed that the details of the bare force are not
overly important as long as the force is solenoidal and con-
centrated on the large scales. Such force generates direct
energy cascade that is characterized by the Kolmogorov

spectrum. In the present model, f�
0�k̂� in �19� is solenoidal

and homogeneous in space and time such that its correlation
function can be written as

	f�
0��,k�f�

0���,k��
 = D0�k���� + �����k + k��P���k� .

�32�

Peaking at the largest scales of the flow, f�
0�� ,k� resembles

the � function, D0�k����k�. Utilizing the fact that the inte-
gral of �32� over all k determines the rate of the large-scale
energy injection into the system, find D0�k���. Invoking the
power-law representation of the � function in a three-
dimensional space,28 ��k�= �1/4
�lim�→0 �k−3+�, observe
that the bare force correlator �32� has an infinitesimal ampli-
tude for k�0,29

	f�
0��,k�f�

0���,k��
 � �k−3+����� + ���

���k + k��P���k�, � → 0. �33�

Similar to the bare force, the dressed force is also sole-
noidal, zero mean, white noise in time, isotropic, and homo-
geneous in time and space, and its correlation function is
given by

	f���,k�f����,k��
 = 2D�2
�4k−3P���k���� + ���

���k + k�� . �34�

The dressed force is postulated to be Gaussian; its correlator
�34� accounts for the statistically mean rate of energy input
to a given mode k via its interaction with other modes. Thus,
its amplitude D should be proportional to the mean rate of
energy transfer through the mode k. Indeed, a relationship
D�15.7� has been derived for neutrally stratified flows.18 A
multiplicative factor k−3 in �34� ensures correct dimensional-

ity. Several numerical coefficients are introduced for conve-
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nience. Comparing �33� and �34�, find that although both
bare and dressed correlators scale with k−3, their amplitudes
are strikingly different being infinitesimal for the bare forc-
ing and finite for the dressed forcing. Note also an important
difference in the energetics of the bare and dressed forces.
The former pertains to the global energy balance while the
latter describes the forcing of a given mode only. Note that
while the assumption of isotropy for the dressed force was
well justified in neutral flows,20 it may break down in flows
with stratification. The anisotropization of the dressed force
will be further discussed in Sec. VII.

D. The Feynman diagram method

To develop an algorithm of small-scale mode elimination
it is convenient to use the Feynman diagram technique. To
simplify the notations, the diagrams will be used in a loose
sense suppressing tensorial indices. However, in the actual
calculations, the tensorial nature of the diagrams is restored
in order to obtain correct tensorial equations. Let us intro-
duce the following diagrammatic notations for the canonical
velocity equation �29�:

Equation �29� can be represented by the following diagram:

Analogous notations can be introduced for the tempera-
ture equation �30�:

such that �30� can be represented by the diagram

From now on, as a general rule, all lines denoting the fast
range variables will be crossed by a short line. For instance,
the slow and fast velocity modes are denoted as

Using Eq. �29�, represent the equations for slow and fast

velocity modes by the following diagrams:
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Diagram A contains fast modes in the third �cross term� and
fourth terms on its right side. Iterate these terms one time by
substituting diagram A in the cross term and diagram B in the
fourth term,

Diagram C is exact. Its various terms can be evaluated by
applying the quasi-Gaussian approximation for the fast
terms, i.e., by replacing all the fast velocity modes, repre-
sented by the thick crossed lines, by their respective Lange-
vin equation �31� and performing averaging over the fast
modes of the dressed force f�.20 All diagrams containing odd
moments of f�, i.e., 4, 6, 8, and 10, average out to zero.

Diagram 3 represents a convolution of the kind �u��k̂− q̂�
�G�q̂�f0�q̂�dq�u��k̂� by the �-function nature of the bare

force. But, since k�D�, u��k̂�=0 by definition of u�, �26�.
Diagram 7 is also zero because it involves the bare force
whose argument belongs in D�. Thus, upon ensemble aver-
aging over the fast modes, only diagrams 5 and 9 yield non-
trivial contributions

�the cross-term contribution20� and

respectively. The sum of these diagrams gives correction to
the inverse Green function that in turn provides corrections
to effective viscosities due to coarse graining. Here, the thick
half circle denotes the spectrum tensor U
��� ,q�, q�D�,
defined via the two-point, two-time velocity correlation
function,

	u
��,q�u����,q��
 = �2
�4��q + q��

���� + ���U
���,q� . �35�

Using Eqs. �31�, �34�, and �35�, evaluate the spectrum tensor,

U
��q̂� = 2Dq−3G�
�q̂�G��
* �q̂�P���q� . �36�

Usually, to derive diagram E, both crossed lines in the last
term on the right side of A are iterated using B and only the
lowest-order terms �i.e., diagrams with two vertices� are re-
tained. This procedure would have yielded a coefficient 4 in
E making it convenient to evaluate the sum of diagrams D
and E. Here, an alternative procedure is adopted that does
not rely on the expansion in powers of the nonlinear cou-

pling. Represent the sum as
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and take a note that the analytical expressions for both dia-
grams in the brackets are identical,

−
1

4
G���k̂�P�
��k�u�

��k̂� � P����k − q�U
���,q�

�G���� − �,k − q�
dqd�

�2
�4 , �37�

albeit their integration domains are different. The first inte-
gral is computed over the intersection of q�D� and 
k−q

�D� while the second integral is computed over the inter-
section of q�D� and 
k−q
�D�. These domains do not
intersect so that the sum of the two integrals can be repre-
sented by a single integral over the union of their domains.
This union is the intersection of q�D� and 
k−q

�D��D� equal to the intersection D��D or, simply, the
shell q�D� itself.

In the remaining integral in F the integration domain is
the intersection of two spherical shells D� shifted by k rela-
tive to each other. This domain is O�����2� as the intersec-
tion of two O���� shells. Eventually, a limit ��→0 will be
taken such that the O�����2� terms should be neglected. This
integral is not small only when k���. However, this re-
quirement is not fulfilled in general. While �� is, indeed,
small, k does not need to be infinitesimal. In fact, the entire
diagram E could be neglected as being O�����2� small. In
other words, the main contribution to the ensemble-averaged
Eq. �19� for the slow modes comes from the cross term. The
contribution from diagram E has been retained only for the
purpose of complementing the integration domain in �37� to
the spherical shell q�D� in order to simplify the
integration.

The equation for the slow modes takes the form of the
canonical equation �19� in which the inverse Green function,
G��

−1 �� ,k�, is modified as a result of the elimination of the
shell D�,

�G��
−1 �k̂� + �G��

−1 �k̂��u�
��k̂�

= f�
0�k̂� −

i

2
P�
��k� � u


��q̂�u�
��k̂ − q̂�

dq̂

�2
�4 , �38�

where

�G��
−1 ��,k� = P�
��k���

P����k − q�

� U
���,q�G���� − �,k − q�
dqd�

�2
�4 �39�

and

��

dq̂ = �
D�

dq�
−	

	

d� . �40�

For transparency, it would be beneficial to explicitly account
for the parametric dependence of �G��

−1 on the dynamic dis-
sipation cutoff � and write �G��

−1 �� ,k ;��. The integral in

�39� is calculated in the limits �→0 �only the long-time
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behavior is considered� and k /�→0 in which only the terms
up to O�k2� are retained �the distant interaction
approximation18,19�. Although the validity of the distant in-
teraction approximation cannot be proven rigorously at the
present time, it can be justified using heuristic arguments.19

Its utility is underscored by the fact that it provides an accu-
rate description of the effective viscosity.19 The distant inter-
action approximation will be adopted throughout this study.
The parameter � will be omitted from the argument of �G��

−1

for brevity.
Applying the Feynman diagram method to the tempera-

ture equation �30�, obtain diagrammatic equations for the
slow and fast temperature modes, T� and T�,

The right side of the diagram for T� contains five terms;
those are the forcing GTfT, the conventional nonlinear term
u�T�, the two cross terms u�T� and u�T�, and the term
u�T�. Similar to the case of velocity equation, the cross
terms are iterated by substituting the slow mode diagrams, G
and A, for T� and u�, respectively, while the term u�T� is
iterated by substituting diagram H for T�. As a result, the
following diagram emerges:

Similar to diagram C, this diagram is exact. Its ensemble
average can be evaluated by replacing all the fast velocity
and temperature modes, represented by the thick straight and
wavy crossed lines, by their respective Langevin equations,
�31� and �18�, and performing averaging over the fast modes.
All diagrams containing odd moments of f�, i.e., 4, 7, 9, 11,
13, and 16, average out of zero. Diagram 8 represents a

convolution of the kind �T��k̂− q̂�G�q̂�f0�q̂�dq�T��k̂� by
the �-function nature of the bare force. But, since k�D�,

T��k̂�=0 by definition of T�, Eq. �28�. Diagrams 6, 10, and
15 are evaluated by substitution of Eqs. �16� and �18� that

� �
relate u3 to T ; they produce three types of diagrams,
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These diagrams describe the thermodynamic corrections to
the forcing term GTfT which are O�k2� small. Diagrams 3 and
12 are evaluated by substituting Eq. �16� that relates fT to

u3�k̂� and then diagram A for u3
� in 3 and diagram B for u3

�

in 12. The ensuing diagrams are of the second and third types
as shown above and thus produce additional thermodynamic
corrections to the forcing term GTfT which are O�k2� small.
At the final account, only two diagrams, 5 and 14, generate a
nontrivial correction to the right side of diagram G after
elimination of the fast shell D�; this correction is given by
the following diagrammatic sum:

The analytical expression for this sum is

− GT�k̂�k�k�T��k̂���

U����,q�GT�� − �,k − q�
dqd�

�2
�4 ,

�41�

where the integration domain is a spherical shell D� defined
in �40�. Similar to the case of the coarse graining of the
velocity diagram A, the second diagram complements the
integration domain in �41� precisely to the spherical
shell D�.

Finally, these results can be recast in terms of the cor-
rection to the inverse temperature Green function GT

−1 in the
coarse-grained Eq. �15� after one iteration,

�GT
−1�k̂� + �GT

−1�k̂��T��k̂� = fT�k̂� − ik�� u�
��q̂�

�T��k̂ − q̂�
dq̂

�2
�4 , �42�

where

�GT
−1��,k� = k�k���

U����,q�GT�� − �,k − q�
dqd�

�2
�4 .

�43�

Similar to Eq. �39�, the integral in �43� is calculated invoking
the limit �→0 and the distant interaction approximation
which give rise to corrections to the effective diffusivity due
to the coarse graining.

E. Effective viscosity in case of neutral stratification

In the case of neutral stratification, the velocity Green
function is essentially a scalar given by �13�; the correction
to the inverse Green function �i.e., Eq. �39�� simplifies to

�G−1�k̂���� = 2DG�k̂�P�
��k���


G�q̂�
2G�k̂ − q̂�

�P����k − q�P�
�q�q−3 dq̂
4 . �44�
�2
�
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The term �G−1�k̂� is the direct result of elimination of
the fast shell D� and, thus, reflects the impact of this shell
upon the remaining slow modes. Taking the limit �→0 and
invoking the distant interaction approximation, calculate cor-
rection to the effective viscosity resulting from the elimina-
tion of the shell D�,

��n = − Ad
D

�n
2�5�� , �45�

where

Ad =
Ãd

2
2 , Ãd =
d − 1

2�d + 2�
, �46�

and d=3 is the spatial dimension20 �in the forthcoming deri-
vations, the effective viscosity in the neutral case will carry
the subscript n: �n�. Equation �45� completes one iteration in
the process of small-scale mode elimination.

In the limit ��→0, one obtains a differential equation,

d ln �n

d ln �
= −

AdD

�n
3����4 , �47�

which can be solved subject to the boundary condition
�n��0�=�0, �0=kd. For ��kd, the asymptotic value of
�n��� is

�n��� � �3AdD

4
�1/3

�−4/3 � �0.0076D�1/3�−4/3. �48�

These and other results �the derivation of the Kolmog-
orov spectrum, the calculation of the Kolmogorov and
Batchelor constants, etc.� as well as the technique of the
small-scale mode elimination are basically the same as in the
RG theory of turbulence.17–19 However, in the QNSE model
these results are obtained via quasi-Gaussian mapping of the
velocity field using the Langevin equation �31� with the pos-

tulated dressed force f��k̂� and without explicit resorting to
the � expansion and fixed-point arguments that are central to
the RG theory. In addition, retaining the cross term in the
equation for u� and evaluating the integral in �39� over the
shell D� have resulted in the disappearance of the parameter
�=4 of the � expansion from the amplitude of the effective

viscosity, Ãd in �46�.20

When stable stratification is present, the computation of
the integrals in �39� and �43� is hampered by anisotropy. This
problem will be dealt with in Secs. III–V. The calculations
have been assisted by the use of symbolic computer language
MATHEMATICA™.

III. HORIZONTAL AND VERTICAL EFFECTIVE
VISCOSITIES AND DIFFUSIVITIES

The calculation of the integrals in �39� and �43� detailed
in Secs. IV and V will yield corrections to the inverse veloc-
ity and temperature Green functions. Due to the anisotropy
introduced by stable stratification, the effective viscosities
and diffusivities will be shown to transform differently in the
directions parallel and orthogonal to the direction of stratifi-
cation. Stable stratification breaks the isotropy of the flow in

the vertical but leaves it intact in the horizontal direction. To
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take advantage of this in the calculations, we will distinguish
between the horizontal �kh� and vertical �kz�k3� wave
numbers,

k2 = k1
2 + k2

2 + k3
2 = kh

2 + k3
2, �49�

and between the horizontal ��h ,�h� and vertical ��z ,�z� ef-
fective viscosities and diffusivities, which, for the future con-
venience, can be written as

�h � �, �z = � + ��z, �50�

�h � �, �z = � + ��z. �51�

Then, the spectral viscosity and diffusivity operators become

�hkh
2 + �zkz

2 = �k2 + ��zk3
2, �52�

�hkh
2 + �zkz

2 = �k2 + ��zk3
2, �53�

and the scalar Green functions can be defined as

G��,k,k3� = �− i� + �k2 + ��zk3
2�−1, �54�

GT��,k,k3� = �− i� + �k2 + ��zk3
2�−1. �55�

Prior to the initiation of the scale elimination process, the
values on the right side of these equations are �=�0, �=�0,
��z=0, and ��z=0.

In Secs. IV and V, it will be shown that the corrections to
the inverse velocity and temperature Green functions due to
elimination of the fast shell D� have the following form:

�G��
−1 �0,k� = ����k2�� + k3

2���z� + ��3�V�3, �56�

�GT
−1�0,k� = k2�� + k3

2���z, �57�

where ��, ���z, ��, ���z, and �V�3 are all O����. Note
that the correction to the inverse Green function, �G��

−1 , pre-
serves the tensorial structure of G��

−1 , and the corrections to
the effective viscosities and diffusivities preserve the form of
the respective inverse Green functions �54� and �55�. The
off-diagonal term �V�3 in �56� is comprised of the terms
proportional to k2 and k3

2 which are structurally similar to the
horizontal and vertical viscosities. On the other hand, the
off-diagonal term is proportional to k2N which can be inter-
preted as a small correction to the Brunt-Väisälä frequency
N. Hence, this term does not affect the calculation of the
diagonal terms. Although these off-diagonal terms may be
important in some situations,30 their consideration is beyond
the scope of the present study.

The tensorial velocity Green function, Eq. �21�, can be
written in the new notations as

G����,k,k3� = G��,k,k3����� + A��,k,k3�P�3�k���3� ,

�58�

where

A��,k,k3� = − N2��− i� + �k2 + ��zk3
2�

� �− i� + �k2 + ��zk3
2� + N2P33�k��−1. �59�

Evaluate the energy spectrum tensor �36� using �58� and

�59�,
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U����,k,k3� = 2Dk−3
G��,k,k3�
2

� �P���k� + B��,k,k3�P�3�k�P�3�k�� ,

�60�

where

B��,k,k3� = A��,k,k3� + A*��,k,k3�

+ 
A��,k,k3�
2P33�k� . �61�

The explicitly anisotropic variables introduced in this
section significantly simplify the calculation of the effective
transport coefficients in stably stratified flows detailed in
Secs. IV and V.

IV. COMPUTATION OF THE EFFECTIVE DIFFUSIVITIES

Evaluation of the integrals in Eqs. �39� and �43� includes
the following steps:

�A� Contour integration over the frequency �;
�B� making use of the distant interaction approximation;
�C� integration over the spherical shell D� which com-

bines multiplication by �� and the angular integration over
the surface of the sphere with the radius �.

The inherent anisotropy due to stable stratification com-
plicates this angular integration. However, utilizing isotropy
of the integrand in the horizontal plane allows to carry out
most of the calculations analytically.

In order to reduce the algebraic burden and make the
computation procedure more transparent to the reader, the
integral in �43� will be calculated first. Then, we will present
a compressed calculation of the integral in �39� placing the
lengthier algebraic expressions in Appendixes.

Another general remark needs to be made. In the forth-
coming calculations, the continuity equation �7� will be rou-
tinely enforced, i.e., since the integral �39� is factored with

u��k̂�, any term in the integral that is proportional to k� will
be set to zero automatically. Other simplifying relationships
are related to the symmetry and solenoidality properties of
the projection operator, P���k�= P���k� and k�P���k�=0.
All the related simplifications will be implemented without
specific mentioning.

Let us now turn to Eq. �43� where the integrand is

I��
T = U����,q,q3�GT�� − �, 
k − q
,k3 − q3� . �62�

According to the distant interaction approximation, the cal-
culation of the expression in the right side of �43� needs to be
carried out only up to the order of O�k2�. Due to the presence
of the product k�k� in front of the integral in �43�, only the
O�1� terms should be retained in the integrand �62� such that
one can set k=0 and k3=0 in GT yielding

I��
T = U����,q,q3�GT�� − �,q,q3� . �63�

Using Eq. �60� one can represent I��
T as a product,

I��
T = 2Dq−3GT�� − �,q,q3�G��,q,q3�G�− �,q,q3�

� �P���q� + B��,q,q3�P3��q�P3��q�� . �64�
Recall that since only long-term flow properties are of inter-
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est here, Eq. �64� is considered in the limit �→0.
Inspection of Eq. �64� reveals that it contains scalar fac-

tors that depend on � and tensorial factors that are indepen-
dent of �. Therefore, the integrand I��

T can be represented as
a factorized sum,

I��
T = 2Dq−3�

i=1

2

T��
i �q�Si��,q,q3� , �65�

where

T��
1 �q� = P���q� , �66�

T��
2 �q� = P3��q�P3��q� , �67�

S1��,q,q3� = GT�− �,q,q3�G��,q,q3�G�− �,q,q3� ,

�68�

S2��,q,q3� = S1��,q,q3�B��,q,q3� . �69�

The factorized representation �65� significantly simplifies the
forthcoming calculations because the frequency integration
involves only the scalar functions.

At this point, the preconditioning of the integrand is
completed and the integral in �43� can be calculated follow-
ing the steps A, B, and C outlined earlier.

A. Frequency integration

The �-integration of the scalar functions S1�� ,q ,q3�
and S2�� ,q ,q3� in �65� will be performed next using the
contour methods.

1. Contribution from S1
„� ,q ,q3…

This term produces three poles,

�1 = i�q
T, �2,3 = ± i�q, �70�

where

�q
T � �q2 + ��zq3

2, �71�

�q � �q2 + ��zq3
2. �72�

Two of these poles, �1 and �2, are located in the upper half
plane while �3 belongs in the lower half plane. The fre-
quency integral R1 is computed using the residue at the pole
�3 yielding

R1�q,q3� =� S1��,q,q3�
d�

2

=

1

2�q��q + �q
T�

. �73�

2. Contribution from S2
„� ,q ,q3…

This term produces seven poles, three of which are given
by Eq. �70� and the rest, due to the factor B�� ,q ,q3�, are

�4,5,6,7 = ±
i

2
��q + �q

T� ±
1

2
�4N2P33�q� − ��q − �q

T�2.

�74�

Four of these seven poles, �1, �2, �4, and �6, are located in

the upper half plane while the remaining three belong in the
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lower half plane. The frequency integral R2 is calculated us-
ing the residues at the latter poles yielding

R2�q,q3� =� S2��,q,q3�
d�

2


=
− N2

2�q��q + �q
T��N2P33�q� + �q�q

T�
. �75�

The frequency integration in �43� is now completed and
the result is

� I��
T d�

2

= 2Dq−3�

i=1

2

T��
i �q�Ri�q,q3� . �76�

The angular integration is described next.

B. Distant interaction approximation

The distant interaction approximation makes it possible
to isolate terms that generate effective viscosities and diffu-
sivities and to simplify the angular integration. Recall that in
this approximation, only the terms up to O��k /��2� are re-
tained in �GT

−1. In fact, this approximation has already been
applied to Eq. �62� when k and k3 were set to zero due to the
presence of the factor k�k� in front of the integral in �43�. It
is useful to show here the expressions for the contraction of
the factor k�k� with T��

1 and T��
2 although these products

are already O�k2� and do not require any additional
simplifications,

k�k�T��
1 �q� = k�k�P���q� = k2 −

k�k�q�q�

q2 , �77�

k�k�T��
2 �q� = k�k�P3��q�P3��q�

= k3
2 −

2k3q3k�q�

q2 +
q3

2kak�q�q�

q4 . �78�

C. Integration over the spherical shell D>

The integration of expression �76� over a spherical shell
D� consists of the integration in the radial direction �which
just means multiplication of the integrand by −��; the nega-
tive sign is due to compression of the domain when scales
are eliminated� and subsequent integration over the surface
of a d-dimensional sphere, �d, with a radius � �it is conve-
nient to perform some of the calculations in the
d-dimensional space with the understanding that d=3�. In the
isotropic case, the angular integration would be straightfor-
ward yielding the sums of the products of the Kronecker �
symbols.18,20 In flows with stable stratification, however, the
integrand �76� is anisotropic and the procedure of angular
integration needs further development. Inspecting this inte-
grand with account of Eqs. �77� and �78�, observe that it is
comprised of the products of terms, some of which depend
on q3 only �these terms are due to the residues R1 and R2�
while others, produced by the tensorial functions T��

1 and
T��

2 , involve a polynomial dependence on the scalar products
of the type k�q�. The latter terms preserve the isotropy in the

horizontal plane. Taking advantage of this observation, one
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can perform the angular integration over the surface of a
d-dimensional sphere �d by, first, integrating over the sur-
face of a d−1-dimensional sphere �d−1 �for d−1=2, such a
sphere is a circle in the horizontal plane� and, second, inte-
grating over the vertical semicircle:

�
D�

ddq = − ���
�d

dd−1q = − ����
0




d��
�d−1

dd−2q .

�79�

Note that in the integration over �d−1, the horizontal radius
qh is a function of the vertical coordinate given by

qh = q sin � = � sin � , �80�

where � is the angle between the vector q and the vertical
axis; q is replaced by � reflecting the fact that D� is a
spherical shell of the radius �. By definition of the projection
operator �11�, one finds

P33�q� = 1 − q3
2/q2 = sin2 � . �81�

Due to the horizontal isotropy of the integrand �76�, the
integration over �d−1 can be performed analytically after rep-
resenting the vector q as a sum of its horizontal, qh

= �q1 ,q2 ,0�, and vertical, q3, projections,

qj = qhj + q3�3j . �82�

The integration over a d−1-dimensional spherical surface of
the radius � can be accomplished by utilizing the following
auxiliary relationships valid for the horizontal components of
the vector q,

�
�d−1

dd−2q = Sd−1�� sin ��d−2, �83�

�
�d−1

qh�
qhb

dd−2q = Sd−1�� sin ��d ���

d − 1
, �84�

�
�d−1

qh�
qh�

qh�
qh�

dd−2q = Sd−1�� sin ��d+2

�
������ + ������ + ������

�d − 1��d + 1�
,

�85�

where Sd=2
d/2 /��d /2� is the surface area of a
d-dimensional unit sphere, and � through � are indices in the
horizontal plane.

Substituting �82� in �77� and �78� and expanding the
products, obtain

k�k�T��
1 �q� = k2 −

k3
2q3

2

q2 −
2k3q3k�qh�

q2 −
k�k�qh�qh�

q2 ,
�86�
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k�k�T��
2 �q� = k3

2 −
2k3

2q3
2

q2 +
k3

2q3
4

q4 −
2k3q3k�qh�

q2

+
2k3q3

3k�qh�

q4 +
q3

2k�k�qh�qh�

q4 . �87�

Using �86� and �87� along with the auxiliary relationships for
the integration in the horizontal plane, obtain

�
�d−1

k�k�T��
1 �q�dd−2q = Sd−1�� sin ��d−2�k2�1 +

sin2 �

d − 1
�

+ k3
2�d sin2 �

d − 1
− 1�� , �88�

�
�d−1

k�k�T��
2 �q�dd−2q = Sd−1�� sin ��d−2�k2sin2 � cos2 �

d − 1

+ k3
2 sin2 �

d sin2 � − 1

d − 1
� . �89�

Equations �88� and �89� confirm that the tensorial struc-
ture was not violated during this calculation so that �GT

−1 can
be represented in the format �57�,

�GT
−1 = k2�� + k3

2��z.

Finally, collect all the factors, take the limit ��→0,
substitute d=3, and obtain differential equations for �
and �z,

d�

d�
= −

D

8
2�
�

0


 �N2 sin2 � + �2 − sin2 ������
T �sin �

����� + ��
T ��N2 sin2 � + ����

T �
d� ,

�90�

d�z

d�
= −

D

4
2�
�

0


 ��
T sin3 �

��� + ��
T ��N2 sin2 � + ����

T �
d� ,

�91�

where

�� � �2�� + ��z cos2 �� , �92�

��
T � �2�� + ��z cos2 �� . �93�

Equations �90� and �91� are coupled; their right sides involve
both effective diffusivities and viscosities. Two additional
differential equations, for � and �z, will be derived in Sec. V.
Even though the integrals on the right sides of all four equa-
tions cannot be taken analytically, they can be computed nu-
merically using the values of the effective viscosities and
diffusivities accumulated at �.

V. COMPUTATION OF THE EFFECTIVE VISCOSITIES

Equations for � and ��z will be derived in this section
using exactly the same steps and algorithms as those used

above to obtain the effective diffusivities.
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A. Frequency integration

It is convenient to bring the factor P�
��k� inside the
integral in �39� and represent the integrand as

I�� = P�
��k�P����k − q�

� G���� − �, 
k − q
,k3 − q3�U
���,q,q3� . �94�

Substitute Eq. �21� for the Green function and �60� for
the velocity correlator in �94� and represent the integrand as
a factorized sum,

I�� = 2Dq−3P�
��k��
i=1

4

T
��
i Si, �95�

where the tensorial terms are

T
��
1 = P
��q��k�P���k − q� − P���k − q�q�� , �96�

T
��
2 = P
��q�P3��k − q��k�P3��k − q� − P3��k − q�q�� ,

�97�

T
��
3 = P3
�q�P3��q��k�P���k − q� − P���k − q�q�

− P���k − q�q�� , �98�

T
��
4 = P3
�q�P3��q�P3��k − q��k�P3��k − q�

− P3��k − q�q� − P3��k − q�q�� , �99�

and the scalar terms, in the limit �→0, are

S1 = G̃ , �100�

S2 = G̃A , �101�

S3 = G̃B , �102�

S4 = G̃AB , �103�

where G̃=G�−� ,q ,q3�G�� ,q ,q3�G�−� , 
k−q
 ,k3−q3�, A
=A�−� , 
k−q
 ,k3−q3�, and B=B�� ,q ,q3�.

Similar to the case of the temperature equation �65�, only
the scalar functions Si are � dependent; they generate a set
of poles in the frequency integration in �39� whose contribu-
tion can be calculated using standard contour methods. The
tensorial terms, on the other hand, only affect the angular

integration. The contour integration is performed next.
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1. Contribution from S1

This term produces three poles,

�1,2 = ± i�q, �3 = i�k−q, �104�

where �q is given by Eq. �72� and

�k−q � �
k − q
2 + ��z�k3 − q3�2. �105�

Two of these poles, �1 and �3, are located in the upper half
plane while �2 belongs in the lower half plane. The fre-
quency integral R1�k ,k3 ,q ,q3� �for brevity, the arguments of
Ri will be suppressed thereon� is computed using the residue
at pole �2 yielding

R1 =� S1��,k,k3,q,q3�
d�

2

=

1

2�q��k−q + �q�
. �106�

2. Contribution from S2

The product of G̃ and the factor A, Eq. �22�, produces, in
addition to the three poles of S1, two more complex poles in
the upper half plane,

�4,5 =
i

2
��k−q + �k−q

T �

±
1

2
�4N2P33�k − q� − ��k−q − �k−q

T �2, �107�

where

�k−q
T � �
k − q
2 + ��z�k3 − q3�2. �108�

Thus, function S2 has five poles given by �104� and �107�;
four of them are located in the upper and one in the lower
half plane. The frequency integral R2 is computed using the
residue at pole �2:

R2 =� S2��,k,k3,q,q3�
d�

2


= − R1 N2

��k−q + �q���q + �k−q
T � + N2P33�k − q�

. �109�

3. Contribution from S3

The function B given by �61� has the same poles as A
and its conjugate A* except that now k=0 in the argument
of A,

�6,7,8,9 = ±
i

2
��q + �q

T� ±
1

2
�4N2P33�q� − ��q − �q

T�2,

�110�

where �q
T is given by Eq. �71�. Thus, S3 has seven poles as

given by Eqs. �104� and �110�; four of these poles are located
in the upper and three in the lower half plane. The frequency
integral is computed using the residues at the lower half-

plane poles and the result is
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R3 =� S3��,k,k3,q,q3�
d�

2

= − N2R1N2P33�q���q + �q

T� + �q
T��k−q

2 + 2�q��q + �q
T� + �k−q�2�q + �q

T��
��q + �q

T��N2P33�q� + �q�q
T��N2P33�q� + ��k−q + �q���k−q + �q

T��
. �111�
4. Contribution from S4

The poles of the product G̃AB are the union of all the
poles given by �104�, �107�, and �110�; thus, the function S4

has nine poles, six of them located in the upper and three in
the lower half plane. As in all other cases, the frequency
integral is computed using the residues at the lower half-
plane poles, yielding a full expression for

R4 =� S4��,k,k3,q,q3�
d�

2

�112�

that is given in Appendix A.
Upon completing the frequency integration, the inte-

grand in the remaining integral over the spherical shell D�

takes the form

I�� = 2Dq−3P�
��k��
i=1

4

T
��
i Ri. �113�

B. Distant interaction approximation

Let us simplify the integrand �113� by retaining only the
terms up to O��k /��2�. Unlike the case of temperature equa-
tion, where the integral in �43� was factored with an O�k2�
term and the integrand required evaluation only at the order
of O�1�, in the case of velocity equation, there exists only an
O�k� factor in front of the integral in �39�, P�
��k�. Thus
each of the factors, T
��

i and Ri in �113�, should be computed
up to the order of O�k�. This leads to a significant prolifera-
tion of terms in the power-series expansions compared to the
case of the temperature equation. Despite the mathematical
burden, however, the main techniques employed in this sec-
tion are similar to those used in the calculation of the effec-
tive diffusivities and they will be presented in full details
including the main derivations. As a general note, so much
details are presented here because these techniques might be
directly applicable for similar calculations involving statisti-
cal methods for anisotropic turbulence of other physics na-
ture. Transparent but technically difficult calculations are
given in Appendixes.

The integrand �113� can be represented as

I�� = 2Dq−3�
i=1

4

���
i Ri, �114�

where

���
i = P�
��k�T
��

i , �115�

and, as explained earlier, ���
i and Ri should be calculated up

to O�k2� and O�k�, respectively. The O�k2� expansions of
���

i are very long and not shown here.
Next, calculate the O�k� expansions of the frequency in-

i
tegrals R given by Eqs. �106�–�112�. Keeping in mind the
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forthcoming integration over the spherical shell D�, separate
the horizontal and vertical terms and represent these expan-
sions as

Ri = R0
i + k3q3Rz

i + kjqhjRh
i + O�k2� , �116�

where R0
i , Rz

i , and Rh
i are functions of q and q3 only; they are

given in Appendix B.

C. Integration over the spherical shell D>

Substituting expansion �116� and �114�, find

I�� = 2Dq−3�
i=1

4

��R0
i + k3q3Rz

i����
i + kjqhjRh

i ���
i � . �117�

In this expression, only the factors ���
i and qhj

���
i depend

on the horizontal projection qhj
. Therefore, the shell integral

�39� can be written as

�
D�

I��ddq = −
2D��

�3 �
�d

�
i=1

4

��R0
i + k3q3Rz

i����
i

+ kjqhjRh
i ���

i �dd−1q

= −
2D��

�2 �
i=1

4 ��
0




���
i ���

��R0
i + k3q3Rz

i�d� + �
0




���
i ���Rh

i d�� ,

�118�

where the factors

���
i = �

�d−1

���
i dd−2q = ����i�k,k3,�� , �119�

���
i = �

�d−1

kjqhj���
i dd−2q = ����i�k,k3,�� �120�

are calculated using decomposition �82� and substitutions d
=3, q=�, and P33�q�=sin2 � to yield

�1�k,k3,�� = �����k2cos2 ��3 + cos 2��
4

+ k3
2cos2 ��1 − 5 cos 2��

4

+ k3� cos � sin2 �� , �121�

�1�k,k3,�� = �����2�k2sin4 �
− k3

2sin4 �� , �122�

4 4

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



085107-14 Sukoriansky, Galperin, and Staroselsky Phys. Fluids 17, 085107 �2005�

D

�2�k,k3,�� = �����k2cos2 ��2 + cos 2��sin2 �

2

+ k3
2 �− 3 − 4 cos 2� − 5 cos 4��sin2 �

8

+ k3� cos � sin4 �� , �123�

�2�k,k3,�� = �����2�− k2cos2 � sin4 �

4

+ k3
2cos2 � sin4 �

4
� , �124�

�3�k,k3,�� = �����k2cos4 � sin2 �

2

+ k3
2cos2 ��3 − 5 cos 2��sin2 �

4

+ k3� cos � sin4 �� , �125�

�3�k,k3,�� = �����2�− k2cos2 � sin4 �

4

+ k3
2cos2 � sin4 �

4
� , �126�

�4�k,k3,�� = �����k2cos4 � sin4 �

− k3
2 �1 + 2 cos 2� + 5 cos 4��sin4 �

8

+ k3� cos � sin6 �� , �127�

�4�k,k3,�� = �����2�− k2cos2 � sin6 �

4

+ k3
2cos2 � sin6 �

4
� , �128�

where ����=2
� sin �. Finally, collecting all the factors,
separating the results into groups of terms proportional to k2

and k3
2, and taking the limit ��→0, obtain a system of two

differential equations for � and �z,

d�

d�
= −

D

4
3�2�
0




F���d� , �129�

d�z

d�
= −

D

4
3�2�
0




Fz���d� , �130�

where the integrands are

F��� = k−2�
4

�R0
i �i�k,0,�� + Rh

i �i�k,0,��� , �131�

i=1
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Fz��� = F��� + k3
−2�

i=1

4

��R0
i + Rz

i� cos ���i�0,k3,��

+ Rh
i �i�0,k3,��� . �132�

In addition to the O�k3
2� terms, the last expression contains

O�k3� and O�k3
3� terms under the summation sign. The former

terms yield zero contribution to the angular integration in
�129� while the latter terms can be neglected as being O�k3

3�
small.

Equations �129�, �130�, �90�, and �91� form a system of
four coupled ordinary differential equations for the
�-dependent effective viscosities and diffusivities,

d�

d�
= −

D

2
2�5Q1��,�z,�,�z,N/�2� , �133�

d�z

d�
= −

D

2
2�5Q2��,�z,�,�z,N/�2� , �134�

d�

d�
= −

D

2
2�5Q3��,�z,�,�z,N/�2� , �135�

d�z

d�
= −

D

2
2�5Q4��,�z,�,�z,N/�2� , �136�

where Q1 through Q4 are complicated integral expressions
that cannot be evaluated analytically. Inspection of these ex-
pressions reveals that they are homogeneous functions of or-
der 2, i.e., each one of them can be transformed according to

Q��,�z,�,�z,N/�2� =
1

�n
2Q� �

�n
,
�z

�n
,

�

�n
,
�z

�n
,F−1� , �137�

where

F �
�n�2

N
�138�

is a spectral Froude number and �n is given by Eq. �48�. The
nondimensionalization with �n has been chosen for conve-
nience; either � or �z could also be used. In neutral flows, the
eddy viscosity corresponding to the mode � determines the
eddy turnover time of that mode, �n= ��n�2�−1. In stably
stratified flows, on the other hand, due to anisotropy, the
definition of the eddy turnover time is vague and not unique.
The ratio of the time scales N−1 and �n, which is the Froude
number F, Eq. �138�, characterizes the relative strength of
the effects of turbulence and waves in a stably stratified flow.
The F→	 and F→0 asymptotics describe the cases of
weak and strong stratifications, respectively. Furthermore,
the scaling with �n on the right side of �137� is convenient
because it quantifies the deviations of the actual eddy vis-
cosities and eddy diffusivities from their isotropic neutral
values. Finally, as will be shown later in Secs. VIII and XII,
the definition �138� naturally relates F to other important
characteristics of stably stratified flows.

The full system of equations �133�–�136� cannot be
solved analytically and, thus, should be integrated numeri-
cally. However, the expansion of the functions Q1 through

−1
Q4 in powers of F provides an insight into the onset of
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flow anisotropization under the action of weak stable strati-
fication. This limit is amenable to analytical exploration and
will be considered in Sec. VI.

VI. THE ASYMPTOTIC CASE OF WEAK STABLE
STRATIFICATION

Recall that in the case of neutral stratification, Eqs. �133�
and �134� reduce to �47� whose solution, �n���, is given by
Eq. �48�, while Eqs. �135� and �136� reduce to the equation
for the effective diffusivity of a passive scalar denoted by �n

whose solution is18

� � − 1.39

�0 − 1.39
�0.63� � + 2.39

�0 + 2.39
�0.37

=
�0

�n
, �139�

where �� Prt
−1=�n /�n, Prt is the turbulent Prandtl number,

and �0=�0 /�0. In the limit of an infinite Reynolds number
corresponding to fully developed turbulence, one finds18

Prt�0.72.
When stable stratification is weak, one can derive the

lowest-order approximation to Eqs. �133�–�136� in powers of
the small parameter F−1,

Q1 =
1

5�h
2�1 + F−2� − �h

14�h
−

2�h�h
2

21��h + �h�3 +
�h

2

14��h + �h�2

+
�h

2

14�h��h + �h�� +
�h − �z

�h
� , �140�

Q2 =
1

5�h
2�1 + F−2�− 29�h

21�h
+

8�h�h
2

21��h + �h�3

−
20�h

2

21��h + �h�2 +
29�h

2

21�h��h + �h�� +
2��h − �z�

3�h
� ,

�141�

Q3 =
2

3�h��h + �h��1 −
F−2�h

10�h
+

2��h − �z�
5��h + �h�

+
2��h + 2�h���h − �z�

5�h��h + �h� � , �142�

Q4 =
2

3�h��h + �h��1 −
4F−2�h

5�h
+

�h − �z

5��h + �h�

+
��h + 2�h���h − �z�

5�h��h + �h� � . �143�

One can see that the functions Q1–Q4 are comprised of O�1�
terms corresponding to the case of neutral stratification,
small O�F−2� terms, and terms proportional to the differ-
ences ��h−�z� and ��h−�z�. By subtracting Eq. �141� from
�140� and Eq. �143� from �142�, one can derive differential
equations for these differences. Since, at small F−2, these
equations can be linearized to become ordinary differential
equations �ODEs� with O�F−2� inhomogeneities, their solu-
tions are of the same order, i.e., �h−�z=O�F−2� and �h−�z

=O�F−2�. Therefore, with the exception of the O�1� terms,
all terms in Eqs. �140�–�143� are O�F−2� with constant coef-

ficients dependent solely on �. The resulting system of four
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ODEs can be solved analytically; the solutions are

�h/�n = 1 + 0.095F−2, �144�

�z/�n = 1 − 0.31F−2, �145�

�h/�n = � + 0.054F−2, �146�

�z/�n = � − 0.4F−2. �147�

Thus, the normalized horizontal effective viscosity and dif-
fusivity tend to increase with decreasing F while their verti-
cal counterparts exhibit an opposite tendency pointing to the
increasing large-scale anisotropization of the turbulent trans-
port of momentum and heat under the action of stable strati-
fication. Equations �144�–�147� can be used to quantify the
onset of this anisotropization; for instance, at F�2, all ef-
fective viscosities and diffusivities differ from their neutral
values by less than 10%.

The numerical solution of the nonlinearized asymptotic
equations �133�–�136�, �140�–�143� is shown in Fig. 1. One
can see that for F�2, the effective transport coefficients are
close to their neutral values, �n and �n. When F decreases
below 2, the effective viscosities and diffusivities deviate
from �n and �n significantly; the vertical viscosity and diffu-
sivity decrease while their horizontal counterparts increase.
In the transitional range around F=1, the vertical viscosity
and diffusivity rapidly decrease with decreasing F attaining
zero values at F�0.4. At small F, however, the asymptotic
equations �140�–�143� are not expected to be valid. The be-
havior of � /�n, �z /�n, � /�n, and �z /�n in the entire range
F�0 can be investigated by solving the full system
�133�–�136� numerically; this solution is shown in Fig. 2. For
relatively weak stratification, F�1, the asymptotic and full
solutions are in good agreement. In the limit of strong stable
stratification, F→0, turbulence anisotropization is reflected
in the pronounced disparity between the horizontal and ver-

FIG. 1. Large F asymptotics �weak stratification� of the normalized hori-
zontal and vertical eddy viscosities and diffusivities obtained from the sys-
tem �133�–�136�, �140�–�143�.
tical viscosities and diffusivities. Unlike the asymptotic so-
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lution that attains zero values at F�0.4, in the full solution,
the effective viscosities and diffusivities are always positive.

The asymptotic expansions of the functions Q1–Q4 for
the case of strong stratification are given in Appendix C.

Finally, it should be emphasized that the spectral-space
Eqs. �133�–�136� have been obtained strictly within the
QNSE model with no additional approximations or closures.
For practical applications, one needs to relate the forcing
amplitude D to observable parameters. This can be done by
using an energy balance equation as elaborated in Sec. VII.

VII. THE FORCING AMPLITUDE D

Determine the forcing amplitude D in �34� in the neutral
case. The Green function G�� becomes a diagonal isotropic
tensor G���� ,k�= �−i�+��k�k2����. Recall that one of the
main points of the distant interaction approximation is the
identification of the damping parameter ��k� in the Green
function with the effective viscosity �n��� at �=k yielding

G����,k� = �− i� + �n�k�k2����. �148�

Using this representation together with Eqs. �36� and �48�,
calculate the three-dimensional �3D� energy spectrum,

E�k� = �2
�−3k2� U���k,��d� = 0.26D2/3k−5/3. �149�

The expression for D is derived from the energy dissipation
equation,

� = 2�n����
0

�

p2E�p�dp . �150�

This equation emphasizes the energy loss by the slow modes
0�k�� due to the action of the effective viscosity �n���
accumulated as a result of elimination of the fast modes k

FIG. 2. Normalized horizontal and vertical eddy viscosities and diffusivities
as functions of F obtained from the full system �133�–�136�.
��. Substituting Eqs. �48� and �149� in �150�, find
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D � 13.1� . �151�

This equation can be used to represent the effective viscosity
and the energy spectrum of homogeneous isotropic turbu-
lence in the neutral case, Eqs. �48� and �149�, in terms of the
dissipation rate �,

�n��� � 0.46�1/3�−4/3, �152�

E0�k� = CK�2/3k−5/3, �153�

where the Kolmogorov constant CK�1.45. It should be
noted that the latter derivation is in the spirit of a derivation
given in Ref. 31. Using a different closure relating � and D
based on Eq. �31�, the authors of Ref. 31 derived an expres-
sion for the energy flux through a mode k, equated it to the
energy dissipation rate and found D�15.7� leading to CK

�1.6. Both this and our value CK�1.45 agree well with the
estimate,

CK = 1.5 ± 0.15, �154�

obtained in high Reynolds number flows.32

The assumption of the forcing isotropy, quite natural for
neutrally stratified, isotropic turbulence, may be violated for
modeling flows with stable stratification. However, it is as-
ymptotically valid for diminishing stratification and should
hold in the limit of large k where the effect of stratification
decreases. As an approximation, this assumption will be
adopted in this study and extrapolated to the range of small k
where the stratification effect is strong. This approach makes
it possible to explore the limits of validity of the approxima-
tion of isotropic forcing. Note that this approximation by no
means precludes the system from developing anisotropic fea-
tures due to stable stratification. The anisotropization is re-
flected in the velocity and temperature Green functions,
G���� ,k ,k3� and GT�� ,k ,k3�, as well as in the auxiliary
Green function G�� ,k ,k3�.

VIII. THE OZMIDOV LENGTH SCALE

Taking into account Eq. �152�, the spectral Froude num-
ber F can be represented as

F =
�n�k�k2

N
� 0.5� k

kO
�2/3

, �155�

where

kO = �N3

�
�1/2

�156�

is the Ozmidov wave number. Similar to F, the ratio k /kO

can be used as a nondimensional parameter characterizing
the strength of stratification. The cases of weak and strong
stratifications are recovered in the limits k /kO→	 and
k /kO→0, respectively. The asymptotic equations for the
former case, Eqs. �144�–�147�, can be recast in a form di-
rectly exposing the dependence of the effective viscosities
and diffusivities on the ratio k /kO,

�h/�n = 1 + 0.38�k/kO�−4/3, �157�

−4/3
�z/�n = 1 − 1.24�k/kO� , �158�
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�h/�n = � + 0.22�k/kO�−4/3, �159�

�z/�n = � − 1.6�k/kO�−4/3. �160�

The Ozmidov wave number provides important charac-
terization of the effect of stable stratification also from the
viewpoint of temporal scales. Let us recall the classical dis-
persion relation for linear internal waves,33

�0
2 = N2 sin2 � . �161�

Equating the characteristic time scale for the linear
waves, �N
sin �
�−1, and the turnover time scale for an eddy
of the size k−1, given by �k3E�k��−1/2, E�k� being the Kolmog-
orov spectrum �153�, obtain a characteristic wave number of
the internal wave-turbulence transition,

3/2

FIG. 3. Normalized horizontal and vertical eddy viscosities and diffusivities
as functions of k /kO. The dashed vertical line shows the threshold of internal
wave generation in the presence of turbulence.
kwt � kO
sin �
 . �162�

O
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Full solutions for the normalized effective viscosities
and diffusivities, �h /�n, �z /�n, �h /�n, and �z /�n, are pre-
sented in Fig. 3 as functions of k /kO. At large k /kO �small
scales�, as expected, all the parameters approach their corre-
sponding isotropic values. At small k /kO, on the other hand,
horizontal and vertical viscosities and diffusivities depart
markedly. The horizontal viscosity increases by a factor of
1.3 compared to the neutral case, while the vertical viscosity
decreases to approximately 0.15 of the horizontal viscosity
value. Even for very strong stable stratification, on scales for
which k /kO�1, �z seems to preserve a finite asymptotic
value that is larger than the molecular viscosity. Another in-
teresting result is that �z /�h→0 for k /kO→0, i.e., under
strong stratification, vertical diffusivity is suppressed while
its horizontal counterpart is enhanced increasing by about a
factor of 2 over its value in the neutral case.

IX. DISPERSION RELATION FOR INTERNAL WAVES
IN THE PRESENCE OF TURBULENCE AND
INTERNAL WAVE FREQUENCY SHIFT

An approach based upon the Langevin equations pro-
vides a convenient framework for characterization of nonlin-
ear waves. Indeed, write the Langevin equation �31� as

G��
−1 ��,k�u���,k� = f���,k� . �163�

This equation describes linear, forced, stochastic oscillator
whose eigenfrequencies are given by the secular equation,

det�G��
−1 ��,k�� = 0. �164�

Straightforward calculation yields a solution to Eq. �164�,

�1,2 = −
i

2
��q + �q

T� ±
1

2
�4N2P33�q� − ��q − �q

T�2, �165�

which describes decaying in time waves. The frequencies of

these waves are given by the real part of �165�,
� = �0�1 − F2� ���z/�n� − ��z/�n��cos2 � + ���h/�n� − ��h/�n��sin2 �

2 sin �
�2�1/2

, �166�

or, in terms of the ratio k /kO,

� = �0�1 − � k

kO
�4/3� ���z/�n� − ��z/�n��cos2 � + ���h/�n� − ��h/�n��sin2 �

4 sin �
�2�1/2

, �167�
where �0 is given by �161�. Equations �166� and �167� are, in
fact, dispersion relations for internal waves in the presence of
turbulence; they quantify the internal wave frequency shift
due to turbulence. In the limit of F→0 or k /k →0 �strong
stratification�, the classical dispersion relation for linear in-
ternal waves is recovered. Note that ���0�N for any
stratification which is consistent with the observations of
flows with internal waves.34,35 Note also that Eqs. �166� and
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�167� are the real part of the poles �6,7,8,9 given by Eq.
�110�; they account for internal wave contribution to effec-
tive viscosities and diffusivities.

X. THE THRESHOLDS OF INTERNAL WAVE
GENERATION

The omega functions given by Eqs. �166� and �167� de-
crease with increasing F or k /k and become zero at some k.
O

only limited characterization of the flow field. Various one-
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This can be interpreted as an indication of increasingly dis-
organizing action of the turbulent overturn that negates the
selective ordering between � and k characteristic of internal
waves. The threshold value �=0 selects a scale at which
turbulent scrambling begins to overwhelm internal wave
generation. The corresponding Froude number �referred to as
the critical Froude number Fcrit� can be associated with the
threshold of internal wave generation in the presence of
turbulence,
Fcrit = � 2 sin �

���z/�n� − ��z/�n��cos2 � + ���h/�n� − ��h/�n��sin2 �
� . �168�

The same criterion can be rewritten in terms of the critical wave number kt:

kt = kO� 4 sin �

���z/�n�� − ���z/�n��cos2 � + ���h/�n�� − ���h/�n��sin2 �
�3/2

. �169�
Assuming that the wave radiation begins at relatively large k,
while turbulence is still close to isotropic, and using Eqs.
�144�–�147� to estimate �z /�n−�z /�n�0.4 and �h /�n

−�h /�n�0.4 in this limit, find from Eq. �168� that

Fcrit � 5
sin �
 � 5. �170�

Thus, Fcrit=5 can be used as a threshold criterion of internal
waves generation in the presence of turbulence in the sense
that the waves can only exist for F�Fcrit. Comparing this
criterion with Eqs. �144�–�147� one concludes that internal
wave generation and flow field anisotropization commence at
approximately the same scales.

Another threshold criterion of internal waves generation
can be derived from Eq. �169�,

kt � kO
10 sin �
3/2 � 32kO
sin �
3/2. �171�

Internal waves can only exist for the wave vectors defined by
the interior of the torus k�kt shown in Fig. 4. The maximum
threshold wave number of internal wave generation is at-
tained along the directions �= ±
 /2 where it is equal to
32kO. This value of the threshold is shown in Fig. 3 as a
vertical dashed line. At this value of kt, turbulent viscosities
and diffusivities just begin to deviate from their values under
neutral stratification thus providing a posteriori justification
to the use of neutral case viscosities and diffusivities made to
derive Eq. �171�. Only when �→0 or �→
, kt becomes
small requiring more precise technique of solving Eq. �169�.
Note that the toroidal surface described by �171� is, in fact,
the same as that given by �162� with the exception of the
coefficient 32 in the former versus 1 in the latter.

XI. TURBULENCE SPECTRA

Since the structure of stably stratified flows is strongly
anisotropic, traditional 3D energy spectrum �149� provides
dimensional �1D� spectra of the vector field u�x� give far
more detailed information in this case.36 These spectra are
obtained by integration of the diagonal components of the
spectrum tensor U���� ,k� over planes enclosing the axis k�

or orthogonal to it �and yielding transversal �E��k��, ����
and longitudinal �E��k��� spectra, respectively�. Such spectra
provide diagnostics of the energy redistribution among dif-
ferent components due to the action of stable stratification.
Taking into account the horizontal isotropy of the velocity
field note that there exist only five nontrivial 1D spectra: �a�
the energy spectrum of a horizontal velocity component, say,
u1, as a function of the vertical wave number, E1�k3�; �b� the
energy spectrum of a horizontal velocity component u1 as a
function of the horizontal wave number k1, E1�k1�; �c� the
energy spectrum of a horizontal velocity component as a
function of the horizontal wave number orthogonal to k1,
E1�k2�; �d� the energy spectrum of the vertical velocity com-

FIG. 4. The torus given by Eq. �171� defines the threshold of internal wave
generation in the presence of turbulence: admissible wave vectors must

belong to the torus interior.
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ponent as a function of the horizontal wave number, E3�k1�;
and �e� the energy spectrum of the vertical velocity compo-
nent as a function of the vertical wave number, E3�k3�. The
most interesting 1D characteristics are �a�, �d�, and �e�. These
spectra have been discussed in the literature and there exist
some data available for comparisons with QNSE model pre-
dictions. At the end of the section, the 3D energy spectrum
will also be considered as it has important applications in the
Reynolds-averaged Navier-Stokes �RANS� modeling dis-
cussed in Sec. XII. Let us make a general remark that very
often the 1D spectra found in observations and simulations
are cast in terms of k rather than the corresponding compo-
nents k� which may lead to confusion in some situations.24

Although the spectra below will be given in terms of k�, in
comparison with the data and simulations, the difference be-
tween k and k� will not be accentuated because rigorous
dependence on k� is often unavailable.

A. The spectrum E1„k3…

The 1D spectrum E1�k3� is calculated according to

E1�k3� =
4



�

−	

	 d�

2

�

0

	 �
0

	 dk1dk2

�2
�2 U11��,k� . �172�

Generally, this integral is computed numerically, first, by fre-
quency integration using contour methods and then integra-
tion over the plane k2k3. However, in the case of weak strati-
fication, using Eqs. �144�–�147�, the integration can be
carried out analytically yielding

E1�k3� = 0.626�2/3k3
−5/3 + 0.214N2k3

−3. �173�

This result has several important implications. First, the co-
efficient with the neutral transverse spectrum, 0.626, is in a
very good agreement with the corresponding value of 0.62
given in Ref. 36 thus providing an additional validation of
the QNSE model. Second, the addition to that spectrum due
to stable stratification is proportional to N2k3

−3; the result that

has been widely discussed in the literature.37–41 Note that in
the previous discussions, this term was expressed in terms of
k rather than k3 although the latter has a more rigorous mean-
ing. The value of the coefficient in front of this term was
estimated in LES �Ref. 41� as 0.2; it is in a very good agree-
ment with the value 0.214 found here analytically.

B. The spectrum E3„k1…

The 1D spectrum E3�k1� is calculated according to

E3�k1� =
4



�

−	

	 d�

2

�

0

	 �
0

	 dk2dk3

�2
�2 U33��,k� . �174�

Again, in the general case, this integral can be computed
numerically. However, in the case of weak stratification, an
analytical evaluation of �174� is possible yielding

E3�k1� = 0.626�2/3k1
−5/3 − 0.704N2k1

−3. �175�

Based upon the rapid distortion theory of turbulence, a
similar expression was derived in Ref. 42 with an O�1� co-
efficient in front of N2k1

−3. The analytically derived Eq. �175�

confirms this result and provides the value of that coefficient.
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C. The spectrum E3„k3…

The 1D spectrum E3�k3� is calculated according to

E3�k3� =
4



�

−	

	 d�

2

�

0

	 �
0

	 dk1dk2

�2
�2 U33��,k� . �176�

As in the previous two cases, the integration in �176� can be
performed numerically. An analytical integration is possible
in the case of weak stratification yielding

E3�k3� = 0.47�2/3k3
−5/3 − 0.143N2k3

−3. �177�

Take a note that the coefficient 0.47 for the neutral lon-
gitudinal spectrum is in very good agreement with the corre-
sponding value of 0.46 given in Ref. 36. Note also that if Eq.
�173� suggests that there is a transition from the −5/3 to −3
spectrum at small k /kO, the other two spectra, �175� and
�177�, only indicate that the corresponding Kolmogorov
spectra decrease with increasing stratification. It is important
to keep in mind that asymptotic equations �173�, �175�, and
�177� are only valid in the case of weak stratification and
weak anisotropy. In order to obtain comprehensive expres-
sions for the 1D spectra valid for small k /kO, one needs to
perform numerical integration in Eqs. �172�, �174�, and �176�
using full solution of the system �133�–�136�. Such calcu-
lated spectra always remain positive.

The other two 1D spectra mentioned earlier in this sec-
tion are modified by stratification only slightly such that the
horizontal spectrum as a function of the horizontal wave
number remains close to the −5/3 scaling law which is in
agreement with recent simulations by Lindborg.43 More de-
tailed comparisons with various experimental, observational,
and simulated spectra are beyond the scope of this paper and
will be reported elsewhere.

D. Three-dimensional energy spectrum

The 3D energy spectrum can be calculated from the
spectrum tensor �60� according to

E�k� =
1

2
k2�

−	

	 d�

2

�

�S3

d�

�2
�3U����,k� , �178�

where ��S3
d� denotes integration over the surface of a three-

dimensional unit sphere and the summation rule is imposed.
This integration was performed using contour methods for
the frequency integration and standard analytical methods for
the angular integration; the resulting total energy spectrum is
shown in Fig. 5. One observes that at the same dissipation
rate, the spectrum of a stably stratified flow is very close to
the classical Kolmogorov spectrum �153� of a neutral flow.
The deviation between the spectra is confined to the range
k�kO where the spectrum of stratified flows becomes some-
what smaller than the Kolmogorov spectrum.

Summarizing the results of this section, let us reiterate
that the present model reveals spectral anisotropization
caused by stable stratification. This anisotropization mani-
fests itself as energy increase in the horizontal velocity com-
ponents at the expense of their vertical counterpart. How-
ever, despite considerable energy redistribution among

various velocity components, the 3D energy spectrum re-
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mains close to the classical Kolmogorov spectrum. Although,
as will be shown in Sec. XII, this property of the 3D spec-
trum is useful for derivation of the RANS models, it ob-
scures the physics of the effect of stable stratification. In
strongly anisotropic flows, such as stratified and/or rotating
flows, consideration of a variety of 1D spectra is essential.24

Note in this respect that in stably stratified flows, only the
horizontal spectrum, E1�k3�, has been studied relatively well.
For better understanding of the physics of stably stratified
flows and for comprehensive validation of theoretical mod-
els, it is essential to obtain experimental and computational
information for other 1D spectra.

XII. QNSE-BASED RANS MODELS AND THEIR
VALIDATION

A. Transport coefficients in the RANS format

In this section, it will be shown how the QNSE model
developed above can be used for practical simulations of
turbulent flows with stable stratification. The process of
small-scale elimination is now extended to the largest scales
of the system where turbulence still exists, i.e., to the integral
length scale kL

−1. This approach is analogous to the Reynolds
averaging procedure and the resulting equations comprise a
RANS model. In this context, the effective viscosities and
diffusivities will be identified with the eddy viscosities and
diffusivities.

In Sec. XI it was shown that the 3D energy spectrum of
stably stratified flows does not significantly depart from the
Kolmogorov distribution �153� and, thus, can be used to cal-
culate the total energy of the flow field,

K = �
kL

	

CK�2/3k−5/3dk � 2.2�2/3kL
−2/3, �179�

FIG. 5. The total energy spectrum. The dashed line shows the classical
Kolmogorov −5/3 spectrum �153� for the case of neutral stratification. The
solid line shows the total spectrum of a stably stratified flow.
from which
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K2

�
= 2.22�1/3kL

−4/3. �180�

Comparing this with the equation for the eddy viscosity in
neutral flows, Eq. �152�, find

�n = C

0 K2

�
, �181�

where C

0 �0.095, which is a well-known result from K-�

modeling.
The spectral Froude number F defined in �138� can be

adopted for the RANS modeling if k is replaced by kL. De-
noting the RANS Froude number as Fr and evaluating it
using Eqs. �180� and �181�, find

Fr =
�nkL

2

N
�

�

KN
, �182�

i.e., Fr is the same Froude number as the one used in Refs.
44 and 45. The use of Fr for characterization of the effects of
stratification in turbulent flows is convenient because Fr is
well defined in both shear and shear-free flows. Also, as
found in Ref. 45 Fr is a parameter giving better correlations
with various data than other parameters.

Note that the behavior of the energy spectrum in the
vicinity of kL is relatively uncertain and nonuniversal, so that
Eq. �179� is approximate within an O�1� factor which itself
may depend on other parameters, for instance, the mean
shear. For these reasons, Eq. �182� is also approximate
within an O�1� factor. This factor can be estimated via cali-
bration against observational, laboratory or DNS data. How-
ever, no such calibration was performed here. The QNSE-
based RANS model results will be compared with DNS
database developed in Ref. 44; the initial Taylor microscale
Reynolds number was about 90.

Using �181�, obtain an expression for the vertical eddy
viscosity in stratified flows,

�z = C
�Fr�
K2

�
, �183�

where

C
�Fr� = C

0 �z

�n
�184�

is a Fr-dependent coefficient sometimes referred to as the
eddy viscosity parameter.45 Figure 6 compares Eq. �184�
with the DNS data from Refs. 44 and 45. The agreement is
good for Fr�0.3; for stronger stratification and smaller Fr,
turbulence in DNS was suppressed, possibly, due to the low
Reynolds number.

Figure 7 compares the normalized vertical viscosity and
diffusivity, �z /�n and �z /�n, obtained in the QNSE model
with those simulated in DNS.44 Although the data show a
considerable spread, there exists a relatively good general
and quantitative agreement between the QNSE model and
the DNS data for Fr�0.3. At smaller Fr, turbulence was
suppressed in DNS. As explained earlier, the agreement

could be somewhat improved with a proper calibration of
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Eq. �179�. However, since the Reynolds number in DNS was
low and the amount of data was limited, such a calibration is
deemed unwarranted at this time.

Stratified turbulent shear flows are often characterized
by the gradient Richardson number Ri=N2 /S2, where S is the
magnitude of the shear. Since the mean shear was not in-
cluded in the QNSE model, an additional closure assumption
is required to bring S into consideration. For such an assump-
tion, a balance between the rate of the energy dissipation, �,
the shear production P=�zS

2, and the buoyancy destruction
B=�zN

2 is chosen,

FIG. 6. The eddy viscosity parameter C
 as a function of the Froude number
Fr. The circles show the DNS data from Refs. 44 and 45; solid line is Eq.
�184�.

FIG. 7. The nondimensional vertical eddy viscosity �top� and eddy diffusiv-
ity �bottom� as functions of the Froude number Fr. The circles show the

DNS data from Ref. 44; the solid line is QNSE model.
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� = P − B = �zS
2 − �zN

2 = �zS
2�1 − Ri/Prt� , �185�

where Prt=�z /�z is the “vertical” turbulent Prandtl number,
Prt. This assumption focuses the RANS model on flows close
to local equilibrium. Such flows are abundant in the atmo-
sphere and the oceans and many models used in geophysical
applications also assume local equilibrium or small devia-
tions from it.46 Therefore, using the assumption �185�, the
present model can be applied to and validated in a wide
variety of geophysical flows. In addition, by testing the
model in strongly nonequilibrium flows it may be possible to
establish the limits of its applicability and to find simple
adjustments that may extend the limits of model’s
applicability.

Equations �152� and �185� enable one to relate Ri to the
parameters of the RANS model. Using �152� find

�n � 0.5�1/3kL
−4/3. �186�

Substitution of �185� in �186� yields

�n = 0.5S2/3��1 − Ri/Prt��z�1/3kL
−4/3, �187�

from which

�nkL
2 = 0.53/2��1 − Ri/Prt��1/2� �z

�n
�1/2

S . �188�

Using the definition of Fr, Eq. �182�, and Eq. �188�, find

Ri =
c�Prt

c� + Fr2Prt��n/�z�
, �189�

where c�=0.125. Using �189�, the normalized eddy viscosi-
ties and diffusivities, �h /�n, �z /�n, �h /�n, and �z /�n, can be
presented as functions of Ri; see Fig. 8. The eddy viscosities
and diffusivities begin to depart from their neutral values at
relatively small Ri. The most significant change in their be-
havior takes place in the range of Ri between 0.1 and 1 in
which the vertical mixing of momentum and temperature is
suppressed while the horizontal mixing is enhanced. These

FIG. 8. Normalized eddy viscosities and diffusivities as functions of the
gradient Richardson number Ri.
results do not support the existence of a single valued Ri at
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which turbulence is abruptly suppressed; rather, they are con-
sistent with the discussion of DNS results in Ref. 45 which
also noted the gradual nature of turbulence-internal wave
transition. Furthermore, these results are consistent with the
abundant volume of the data collected in meteorological and
oceanographic observations in which turbulence existed in
flows with Ri far exceeding the critical value of 0.25 �Refs.
47 and 48� and 1 �Ref. 49� �also see Refs. 50–53�.

For Ri�0.1, both the vertical eddy viscosity and diffu-
sivity decrease: �z falls to about one-third of its neutral value
while �z decreases much faster than �z. Eventually, stable
stratification completely suppresses vertical scalar mixing
while vertical momentum mixing continues even at relatively
high Ri. The tendency of the effective vertical viscosity to
attain constant values and even to increase with increasing Ri
has been revealed in recent observations51 and high-
resolution simulations52,54 where it was attributed to the mo-
mentum mixing by internal waves.55,56 This mixing has also
been detected in oceanic observations which consistently re-
veal significant levels of turbulence inside and underneath a
strong thermocline.57–59 Such behavior is not easily repro-
ducible in RANS models or in second-moment closure mod-
els which both exclude internal waves. In the context of
physical oceanography, the concept of externally imposed
“residual” or “background” mixing has been routinely uti-
lized to supplement the Reynolds stress closure-predicted
mixing to account for turbulence that survives at Ri beyond
the critical Richardson number.57,60

The behavior of the vertical turbulent Prandtl number
Prt=�z /�z is of great practical importance because it charac-
terizes the relative diffusion of momentum and heat. Figure 9
compares prediction of the present model with the experi-
mental data from Huq and Stewart �Huq, 2004, private com-
munication�. Both the data and the model indicate that Prt

increases with increasing Ri in the entire range of available
Richardson numbers from 0.1 to 10; the data and the model
are in good quantitative agreement.

Another comparison of the theoretical prediction, this
time for Prt

−1, with the data collected in recent experiments50

and field observations51 is shown in Fig. 10. Again, the gen-
−1

FIG. 9. Turbulent Prandtl number as a function of the gradient Richardson
number Ri. The dots are the experimental data from Huq and Stewart �Huq,
2004, private communication�; the solid line shows the present model’s
results.
eral trend of Prt is reproduced well and the quantitative
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agreement between the data and the model is good. A similar
behavior of either Prt or Prt

−1 was also found in earlier field
observations of the atmospheric boundary layers61 and recent
high-resolution simulations for Ri�2.52

In summary, the results of this section demonstrate that
when used in the RANS mode, the QNSE model produces
the vertical eddy viscosity and eddy diffusivity in good
agreement with laboratory and observational data and DNS.
This is an important prerequisite for successful application of
the QNSE model for accurate simulation of practically im-
portant flows. Section XII B briefly describes testing of these
eddy viscosity and eddy diffusivity in simulations of the at-
mospheric boundary layer over sea ice.

B. Numerical test: K-�-based simulations of the
atmospheric boundary layer over sea ice

Here we present a condensed discussion of how the
theoretically derived eddy viscosity and eddy diffusivity per-
form when implemented in a K-� model and used to simulate
a stably stratified atmospheric boundary layer. Full account
of these simulations is given elsewhere.62

The QNSE-RANS model implemented in the K-� format
was tested in the single-column �time- and vertical
coordinate-dependent� simulations of the stably stratified at-
mospheric boundary layer �SBL� over sea ice in a test case
involving the Beaufort Arctic Storms Experiment �BASE�.
These data has been faithfully reproduced in LES �Ref. 63�
which, thus, can be used as a benchmark. The data were
available for the cases of moderate and strong stable stratifi-
cations so that the model could be tested in both situations.
The difference between these cases was in the rate of surface
cooling equal to 0.25° K h−1 in the former and 1.0° K h−1 in
the latter. The strength of the overlying inversion was
0.01° K m−1 and the surface roughness was 0.1 m. As a car-
rier of the present K-� model, a 1D version of a regional
weather forecast model64,65 has been used. In its K-� engine,
the QNSE-derived eddy viscosity and eddy diffusivity have
been implemented. In addition, the dissipation equation in-
corporated a correction that accounts for the effect of the
planetary rotation66 and an analogous correction that accom-
modates the effect of stratification.62 Even with all these new
features, RANS is much less computationally expensive than

FIG. 10. Inverse vertical turbulent Prandtl number, Prt
−1, as a function of Ri.

The black squares are the experimental data from Ref. 50; the open circles
are the field data from Ref. 51; the solid line is obtained from the present
RANS model.
full LES and therefore it is important to check whether or not
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the prediction accuracy is compromised. Overall, the QNSE-
based K-� model has provided quite comparable description
of atmospheric SBL in the cases of both moderate and strong
stable stratification, simulated with the identical set of con-
stants and with no additional adjustments.

Figure 11 shows profiles of the potential temperature
�PT� simulated with the QNSE-based and the standard K-�
models as well as with the LES after a 12 real-time hour
simulation. The agreement between the present model and
LES is good for both cases of moderate and strong stratifi-
cations. The standard model strongly overestimates the
height of the temperature boundary layer in the case of mod-
erate stratification. The vertical profiles of the horizontal
wind components, U and V, are depicted in Fig. 12. The
results obtained with the QNSE-based K-� model show good
agreement with the LES-computed wind profiles whereas the
standard K-� model does not compare well in the case of the
moderate stratification.

XIII. DISCUSSION AND CONCLUSIONS

Here we attempted to systematically account for the ef-
fect of stable stratification on turbulent flows based upon the
hypothesis of quasi-Gaussianity of the velocity and tempera-

FIG. 11. Vertical profiles of mean potential temperature for the cases of
moderate �top panel� and strong �bottom panel� stable stratification simu-
lated with the new �solid line� and the standard �dashed-dotted line� K-�
models. The LES results �Ref. 63� are shown by the asterisks. The initial PT
profiles �marked as PT0� are shown by the straight solid lines.
ture fluctuations combined with the iterative coarse-graining
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technique. The inherent promise specific to all spectral
models—the QNSE model including—is that they start from
exact equations in which the effects of pressure, stratifica-
tion, and incompressibility are solved for rigorously in the
canonical equation �19�. As a result, it might be expected that
the QNSE model accounts for the combined effect of turbu-
lence and waves. In fact, the QNSE model offers a powerful
machinery to study wave-turbulence interaction. Among new
results are a dispersion relation for internal waves in the
presence of turbulence and the critical Froude number/wave
number characterizing the threshold of internal wave genera-
tion. The wave contribution to the effective viscosities and
diffusivities far exceeds in its complexity all other contribu-
tions; this is evident from the wave generating poles �110�
and the corresponding frequency integrals R3 and R4 given
by Eqs. �111� and �A1�–�A5� in Appendix A. A combined
contribution to mixing and dispersion from turbulence and
waves has been emphasized in Refs. 34 and 35 which noted
that most of the models available today account for turbu-
lence only, the fact characterized as “a significant shortcom-
ing.” The QNSE model is free of this shortcoming.

It was revealed that the Ozmidov wave number plays a
profound role in characterization of the effect of stable strati-
fication. It is useful to trace the analogy between the Ozmi-
dov wave number and the transitional wave number, k�

3 1/5

FIG. 12. Vertical profiles of mean horizontal wind components, U and V,
simulated with the new and the standard K-� models. The initial profiles are
marked as U0 and V0, respectively. The order of panels and the description
of the lines and asterisks are the same as in Fig. 11.
= �� /�� , that characterizes the effect of Rossby waves on
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two-dimensional �2D� turbulence on the � plane.67,68 Recall
that k� was obtained by equating the eddy turnover time
scale of turbulence and the period of a linear Rossby wave.
The resulting curve, coined “the lazy 8”69 or “the dumbbell
shape”67 outlined the regions with prevailing influence of 2D
turbulence �the exterior of the dumbbell� and Rossby waves
�the interior of the dumbbell�. A similar surface in the case of
stable stratification is described by Eq. �162�; it is a torus
whose vertical cross section closely resembles the dumbbell
shape of the �-plane turbulence. Comparing parameters char-
acterizing those dumbbell shapes, conclude that the Ozmidov
wave number kO is the analog of k� on the � plane. From the
viewpoint of turbulence dynamics, both dumbbell shapes
outline the spectral regions of rapid change in flow properties
related to strong large-scale anisotropization and the devel-
opment of slow manifolds along the directions in Fourier
space for which wave propagation is prohibited �kh=0 for
internal waves and kx=0 for Rossby waves�. Further analysis
of the analogies between internal and Rossby waves can be
found elsewhere.9,24

Operating with the horizontal and vertical effective
transport coefficients, the QNSE model recognizes the spa-
tial anisotropy induced by stable stratification and reflects
energy concentration in the horizontal components at the ex-
pense of their vertical counterparts. The practical potential of
the QNSE model is in that it is general enough to accommo-
date the combined effect of internal waves, anisotropy, and
diffusion of momentum and heat within one framework and
at the same time simple enough to produce results readily
available for consumption in LES and RANS models. Note
in this regard that this approach required just a single closure
relationship in order to connect a modal-statistical derivation
with observable physical-space properties; it relates the forc-
ing amplitude and the dissipation rate through the balance
between the energy input rate at large scales and the dissipa-
tion at small scales.

Note that strictly speaking, the QNSE model predicts the
effective response functions in the momentum and tempera-
ture propagators G���� ,k� and GT�� ,k� and, through them,
the effective viscosities and diffusivities, rather than the true
eddy viscosities and eddy diffusivities calculated as two-
parametric characteristics ��k 
kc� and ��k 
kc�, where kc is
the wave number separating subgrid and resolvable modes.70

In 3D flows, except for the cusp behavior at k→kc, the dif-
ference between the effective response functions and the
two-parametric characteristics is small and does not signifi-
cantly affect numerical results. Due to the use of the distant
interaction approximation, this cusp cannot be reproduced;
however, in principle, it is possible to calculate the two-
parametric characteristics from the evolution equations for
the second-order moments using the effective response
functions.71 The two-parametric characteristics have not been
explored in this study; their analysis should be undertaken in
the future research.

Our model predicts that under very strong stable strati-
fication the vertical diffusivity becomes very small while the
horizontal diffusivity is enhanced. The same is true for the
vertical and horizontal diffusivity of the flow momentum,

with the exception that the vertical diffusivity of momentum
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remains finite due to, supposedly, the effect of internal
waves. In connection with this behavior, note that we predict
the increase of the turbulent Prandtl number with increasing
Ri which is supported by laboratory data and some atmo-
spheric and oceanic observations. Another interesting result
produced by the QNSE model is the absence of a critical
Richardson number. The model predicts that while there ex-
ists a sharp transition in turbulence characteristics for Ri in
the range between 0.1 and 1, turbulence survives for the
values of Ri in excess of 10. This prediction agrees well with
numerous observations in the atmosphere and the ocean50–53

as well as with the numerical simulations and theoretical
considerations.43,54,72–74

Although the QNSE model equations for effective vis-
cosities and diffusivities are complicated in the general case
of arbitrary stratification, they simplify significantly in the
asymptotic case of weak stratification in which analytical
expressions can be obtained. These expressions can be used
to understand the mechanics of the flow field anisotropiza-
tion and to calculate various 1D spectra. An important
achievement of the QNSE model is the analytical derivation
of the new spectrum proportional to N2k3

−3 in addition to the
neutral transverse spectrum. The numerical coefficient with
this spectrum is in very good agreement with LES.

Turning to the limitations of the presented model, it
should be noted that it is designed to operate at moderate
stratification. Therefore, the QNSE model should work better
at the small scales close to the dissipation range where strati-
fication is weak. With increasing scales, the effect of strati-
fication strengthen. Here, it is assumed that the dressed forc-
ing remains isotropic for any stratification. Although this
assumption seems to produce satisfactory results overall, it
may become inaccurate under very strong stratification. This
problem can be resolved by considering force anisotropiza-
tion. This is an interesting and important issue which needs
to be addressed in future research.

The hypothesis of quasi-Gaussianity is another assump-
tion which may require reevaluation in the future. Here, it
appears to yield good results for the second-order moments
that produce the essential parameters for the intended appli-
cation in LES and RANS modeling-effective viscosities and
diffusivities. The exploration of the possible effect of non-
Gaussianity of higher-order turbulent correlations on the
second-order moments remains an important task for the
future.

The QNSE model does not consider the direct effect of
the mean shear on turbulent fluctuations at the level of the
momentum balance. Instead, the mean shear is introduced as
the closure assumption at the level of the energy balance.
This approach may degrade the accuracy of the model. The
mean shear can be included directly in the governing equa-
tions; this is yet another issue that needs to be dealt with in
future research.
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APPENDIX A: FREQUENCY INTEGRAL R4, EQ. „112…

R4 =� S4��,k,k3,q,q3�
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� 1
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+

Q2

D2
+

Q3

D3
� ,

�A1�
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D1 = N2P33�q��q��k−q + �q��N2P33�k − q� + ��k−q + �q�
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APPENDIX B: EXPANSION COEFFICIENTS IN EQ.
„116…
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APPENDIX C: ASYMPTOTIC CASE OF STRONG STRATIFICATION

In the limit of strong stable stratification, F→0, the following expressions for Q1–Q4 are obtained:

Q1 =
1

64
� 2

�h�z
+

1

− �h
2 + �h�z

+
2��h + �h��4�h + 3�h� + �22�h + 9�h − 15�z − 15�z���z + �z�

��h + �h − �z − �z�3��z + �z�

−
�z�− 2��h + �h�2 + ��z + �z��9��h + �h� + 8�z + 8�z��

��h + �h − �z − �z�3��z + �z�2 + arcsinh�− 1 +
�h

�z

4�h − 3�z

��h��h − �z��3/2

− arcsinh�− 1 +
�h + �h

�z + �z

� �h + �h

��h + �h − �z − �z�5�17�h + 20�h + �z + �z

�h + �h
+

15��h − �z�
�h + �h − �z − �z

�� , �C1�

Q2 =
1

16
� − 20�h + 2�z − 21�h

��h + �h���h − �z + �h − �z�2 +
�h + 2�z + �h

��h + �h�2��h − �z + �h − �z�
+

2�z

��h + �h�2��z + �z�
+

15��h − �z�
�− �h + �z − �h + �z�3�

+
arcsinh�− 1 + ���h + �h�/��z + �z��

16���h + �h���h − �z + �h − �z�
� − 1

�h + �h
+

15��h − �z���h + �h�
��h − �z + �h − �z�3 +

3�5�h + �z + 7�h�
��h − �z + �h − �z�2

+
9�h + 8�h

��h + �h��− �h + �z − �h + �z�
� , �C2�

Q3 =
�1 − ��z/�h� arcsinh �− 1 + ��h/�z� − �1 − ���z + �z�/��h + �h�� arcsinh �− 1 + ���h + �h�/��z + �z��

2��h�z − �h�z�
, �C3�

2
Q4 = O�F � . �C4�

ownloaded 23 Aug 2005 to 131.247.136.136. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



085107-27 A quasinormal scale elimination model Phys. Fluids 17, 085107 �2005�

D

1A. E. Gargett, “Ocean turbulence,” Annu. Rev. Fluid Mech. 21, 419
�1989�.

2G. N. Ivey and J. Imberger, “On the nature of turbulence in a stratified
fluid. Part I: The energetics of mixing,” J. Phys. Oceanogr. 21, 650
�1991�.

3J. Imberger and G. N. Ivey, “On the nature of turbulence in a stratified
fluid. Part II: Application to lakes,” J. Phys. Oceanogr. 21, 659 �1991�.

4F. S. Godeferd and C. Cambon, “Detailed investigation of energy transfers
in homogeneous stratified turbulence,” Phys. Fluids 6, 2084 �1994�.

5C. Cambon and J. F. Scott, “Linear and nonlinear models of anisotropic
turbulence,” Annu. Rev. Fluid Mech. 31, 1 �1999�.

6J. J. Riley and M. P. Lelong, “Fluid motions in the presence of strong
stable stratification,” Annu. Rev. Fluid Mech. 32, 613 �2000�.

7C. Cambon, “Turbulence and vortex structures in rotating and stratified
flows,” Eur. J. Mech. B/Fluids 20, 489 �2001�.

8M. E. Barry, G. N. Ivey, K. B. Winters, and J. Imberger, “Measurements
of diapycnal diffusivities in stratified fluids,” J. Fluid Mech. 442, 267
�2001�.

9L. M. Smith and F. Waleffe, “Generation of slow large scales in forced
rotating stratified turbulence,” J. Fluid Mech. 451, 145 �2002�.

10C. Staquet and J. Sommeria, “Internal gravity waves: From instabilities to
turbulence,” Annu. Rev. Fluid Mech. 34, 559 �2002�.

11H. Hanazaki and J. C. R. Hunt, “Structure of unsteady stably stratified
turbulence with mean shear,” J. Fluid Mech. 507, 1 �2004�.

12S. A. Thorpe, “Recent developments in the study of ocean turbulence,”
Annu. Rev. Earth Planet Sci. 32, 91 �2004�.

13Marine Turbulence—Theories, Observations and Models, edited by H. Z.
Baumert, J. Simpson, and J. Sundermann �Cambridge University Press,
Cambridge, 2005�.

14S. A. Orszag, in Les Houches Summer School in Physics, edited by R.
Balian and J.-L. Peabe �Gordon and Breach, New York, 1977�, p. 237.

15W. D. McComb, The Physics of Fluid Turbulence �Oxford University
Press, New York, 1991�.

16R. H. Kraichnan, “An interpretation of the Yakhot-Orszag turbulence
theory,” Phys. Fluids 30, 2400 �1987�.

17D. Forster, D. R. Nelson, and M. J. Stephen, “Large distance and long-
time properties of a randomly stirred fluid,” Phys. Rev. A 16, 732 �1977�.

18V. Yakhot and S. A. Orszag, “Renormalization group analysis of turbu-
lence. I. Basic theory,” J. Sci. Comput. 1, 3 �1986�.

19L. M. Smith and S. L. Woodruff, “Renormalization-group analysis of tur-
bulence,” Annu. Rev. Fluid Mech. 30, 275 �1998�.

20S. Sukoriansky, B. Galperin, and I. Staroselsky, “Cross-terms and
�-expansion in RNG theory of turbulence,” Fluid Dyn. Res. 33, 319
�2003�.

21M. Lesieur, Turbulence in Fluids, 3rd ed. �Kluwer, Dordrecht, 1997�.
22C. Staquet and F. S. Godeferd, “Statistical modelling and direct numerical

simulations of decaying stably stratified turbulence. Part 1. Flow energet-
ics,” J. Fluid Mech. 360, 295 �1998�.

23F. S. Godeferd and C. Staquet, “Statistical modelling and direct numerical
simulations of decaying stably stratified turbulence. Part 2. Large-scale
and small-scale anisotropy,” J. Fluid Mech. 486, 115 �2003�.

24C. Cambon, R. Rubinstein, and F. S. Godeferd, “Advances in wave turbu-
lence: rapidly rotating flows,” New J. Phys. 6, 73 �2004�.

25W. D. McComb and C. Johnston, “Conditional mode elimination and
scale-invariant dissipation in isotropic turbulence,” Physica A 292, 346
�2001�.

26R. H. Kraichnan, “Inertial-range transfer in two- and three-dimensional
turbulence,” J. Fluid Mech. 47, 525 �1971�.

27V. M. Canuto and M. S. Dubovikov, “Dynamical model for turbulence: I.
General formalism,” Phys. Fluids 8, 571 �1996�.

28I. M. Gel’fand and G. E. Shilov, Generalized Functions, Properties and
Operations Vol. 1 �Harcourt Brace, New York, 1977�.

29S. A. Orszag, I. Staroselsky, and V. Yakhot, in Large Eddy Simulation of
Complex Engineering and Geophysical Flows, edited by B. Galperin and
S. A. Orszag �Cambridge University Press, Cambridge, 1993�, pp. 55–78.

30V. M. Tsarenko, and A. M. Yaglom, in Studies in Turbulence, edited by T.
B. Gatski, S. Sarkar, and C. G. Speziale �Springer, Berlin, 1992�, pp.
39–59.

31W. P. Dannevik, V. Yakhot, and S. A. Orszag, “Analytical theories of
turbulence and the �-expansion,” Phys. Fluids 30, 2021 �1987�.

32K. Sreenivasan, “On the universality of the Kolmogorov constant,” Phys.
Fluids 7, 2778 �1995�.

33L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. �Pergamon,

Oxford, 1993�.

ownloaded 23 Aug 2005 to 131.247.136.136. Redistribution subject to
34E. A. D’Asaro and R.-C. Lien, “Lagrangian measurements of waves and
turbulence in stratified flows,” J. Phys. Oceanogr. 30, 641 �2000�.

35E. A. D’Asaro and R.-C. Lien, “The wave-turbulence transition for strati-
fied flows,” J. Phys. Oceanogr. 30, 1669 �2000�.

36A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics �MIT Press,
Cambridge, MA, 1975�.

37J. L. Lumley, “The spectrum of nearly inertial turbulence in a stable strati-
fied fluid,” J. Atmos. Sci. 21, 99 �1964�.

38O. M. Phillips, The Dynamics of the Upper Ocean, 2nd ed. �Cambridge
University Press, Cambridge, 1977�.

39G. Holloway, “Considerations on the theory of temperature spectra in
stably stratified turbulence,” J. Phys. Oceanogr. 16, 2179 �1986�.

40A. E. Gargett, P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J.
Williams III, “A composite spectrum of vertical shear in the upper ocean,”
J. Phys. Oceanogr. 11, 1258 �1981�.

41G. F. Carnevale, M. Briscolini, and P. Orlandi, “Buoyancy- to inertial-
range transition in forced stratified turbulence,” J. Fluid Mech. 427, 205
�2001�.

42S. H. Derbyshire and J. C. R. Hunt, in Waves and Turbulence in Stably
Stratified Flows, edited by S. D. Mobbs and J. C. King �Clarendon, Ox-
ford, 1993�, pp. 23-59.

43E. Lindborg, “The effect of rotation on the mesoscale energy cascade in
the free atmosphere,” Geophys. Res. Lett. 32, L01809 �2005�.

44L. H. Shih, J. R. Koseff, J. H. Ferziger, and C. R. Rehmann, “Scaling and
parameterization of stratified homogeneous turbulent shear flow,” J. Fluid
Mech. 412, 1 �2000�.

45S. K. Venayagamoorthy, J. R. Koseff, J. H. Ferziger, and L. H. Shih, CTR
Annual Research Briefs �NASA, Ames, Palo Alto, CA, 2003�.

46G. L. Mellor and T. Yamada, “Development of a turbulence closure model
for geophysical fluid problems,” Rev. Geophys. Space Phys. 20, 851
�1982�.

47J. W. Miles, “On the stability of heterogeneous shear flows,” J. Fluid
Mech. 10, 496 �1961�.

48L. N. Howard, “Note on a paper of John W. Miles,” J. Fluid Mech. 10,
509 �1961�.

49H. D. Abarbanel, D. D. Holm, J. E. Marsden, and T. Ratiu, “Richardson
number criterion for the nonlinear stability of three-dimensional stratified
flow,” Phys. Rev. Lett. 52, 2352 �1984�.

50E. J. Strang and H. J. S. Fernando, “Vertical mixing and transports through
a stratified shear layer,” J. Phys. Oceanogr. 31, 2026 �2001�.

51P. Monti, H. J. S. Fernando, M. Princevac, W. C. Chan, T. A. Kowalewski,
and E. R. Pardyjak, “Observations of flow and turbulence in the nocturnal
boundary layer over a slope,” J. Atmos. Sci. 59, 2513 �2002�.

52A. Mahalov, B. Nicolaenko, K. L. Tse, and B. Joseph, “Eddy mixing in
jet-stream turbulence under stronger stratification,” Geophys. Res. Lett.
31, L23111 �2004�.

53S. A. Mack and H. C. Schoeberlein, “Richardson number and ocean mix-
ing: Towed chain observations,” J. Phys. Oceanogr. 34, 736 �2004�.

54B. Joseph, A. Mahalov, B. Nicolaenko, and K. L. Tse, “Variability of
turbulence and its outer scales in a model tropopause jet,” J. Atmos. Sci.
61, 621 �2004�.

55F. Einaudi and J. J. Finnigan, “Wave-turbulence dynamics in the stably
stratified boundary layer,” J. Atmos. Sci. 50, 1841 �1993�.

56J. J. Finnigan, “A note on wave-turbulence interaction and the possibility
of scaling the very stable boundary layer,” Boundary-Layer Meteorol. 90,
529 �1999�.

57W. G. Large, J. C. McWilliams, and S. C. Doney, “Oceanic vertical mix-
ing: A review and a model with nonlocal boundary layer parameteriza-
tion,” Rev. Geophys. 32, 363 �1994�.

58H. Peters, M. C. Gregg, and J. M. Toole, “On the parameterization of
equatorial turbulence,” J. Geophys. Res. 93, 1199 �1988�.

59M. Cane, in Large Eddy Simulation of Complex Engineering and Geo-
physical Flows, edited by B. Galperin and S. A. Orszag �Cambridge Uni-
versity Press, Cambridge, 1993�, pp. 489–509.

60L. H. Kantha and C. A. Clayson, “An improved mixed-layer model for
geophysical applications,” J. Geophys. Res. 99, 25235 �1994�.

61J. Kondo, O. Kanechika, and N. Yasuda, “Heat and momentum transfer
under strong stability in the atmospheric surface layer,” J. Atmos. Sci. 35,
1012 �1978�.

62S. Sukoriansky, B. Galperin, and V. Perov, “Application of a new spectral
theory of stably stratified turbulence to atmospheric boundary layers over
sea ice,” Boundary-Layer Meteorol. �in press�.

63B. Kosovic and J. A. Curry, “A large eddy simulation study of a quasi-

steady, stably stratified atmospheric boundary layer,” J. Atmos. Sci. 57,

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



085107-28 Sukoriansky, Galperin, and Staroselsky Phys. Fluids 17, 085107 �2005�

D

1052 �2000�.
64V. Perov and S. Gollvik, “A 1-D test of a non-local K-� boundary layer

scheme for a NWP model resolution,” HIRLAM Technical Report 25
�1996�.

65V. Perov, S. Zilitinkevich, and K.-I. Ivarsson, “Implementation of new
parameterisation of the surface turbulent fluxes for stable stratification in
the 3-D HIRLAM,” HIRLAM Newsletter 38, 88 �2001�.

66H. Detering and D. Etling, “Application of the E−� model to the atmo-
spheric boundary layer,” Boundary-Layer Meteorol. 33, 113 �1985�.

67G. K. Vallis and M. E. Maltrud, “Generation of mean flows and jets on a
beta plane and over topography,” J. Phys. Oceanogr. 23, 1346 �1993�.

68A. Chekhlov, S. A. Orszag, S. Sukoriansky, B. Galperin, and I. Starosel-
sky, “The effect of small-scale forcing on large-scale structures in two-
dimensional flows,” Physica D 98, 321 �1996�.

69
G. Holloway, in Predictability of Fluid Motions, edited by G. Holloway

ownloaded 23 Aug 2005 to 131.247.136.136. Redistribution subject to
and B. J. West �American Institute of Physics, New York, 1984�, pp.
593–599.

70R. H. Kraichnan, “Eddy viscosity in two and three dimensions,” J. Atmos.
Sci. 33, 1521 �1976�.

71A. Chekhlov, S. A. Orszag, S. Sukoriansky, B. Galperin, and I. Starosel-
sky, “Direct numerical simulation tests of eddy viscosity in two dimen-
sions,” Phys. Fluids 6, 2548 �1994�.

72A. Babin, A. Mahalov, B. Nicolaenko, and Y. Zhou, “On the asymptotic
regimes and the strongly stratified limit of rotating Boussinesq equations,”
Theor. Comput. Fluid Dyn. 9, 223 �1997�.

73S. H. Derbyshire, “Stable boundary-layer modelling: Established ap-
proaches and beyond,” Boundary-Layer Meteorol. 90, 423 �1999�.

74M. J. Otte and J. C. Wyngaard, “Stably stratified intefacial-layer turbu-

lence from large-eddy simulation,” J. Atmos. Sci. 58, 3424 �2001�.

 AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


