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What is Marine Science?

What it is not: It is not Marine Biology!

It Is: The application of Physics, Chemistry, Geology,
and Biology to the study of the Oceans and the
Ocean-Atmosphere and the Ocean-solid Earth

Interactions.

Goals: To observe, understand, and predict the state
of the ocean and the Earth’s climate and ecology.




What is Physical Oceanography?

The application of physics to the Ocean circulation and to the
Ocean-Atmosphere interactions that give rise to climate.

The Earth’s climate and hence our existential being has its
basis in Physical Oceanography.

Why?

The Earth receives more energy then it radiates in the tropics,
whereas it radiates more energy than it receives at the poles.
Ocean currents and winds result from this imbalance. Winds
drive currents; currents determine temperature, which (via
pressure) drives winds. Thus the Ocean-Atmosphere system
IS Intimately coupled, and this determines Climate.

Currents unite nutrients with light, and this is the underpining
for the Earth’s Ecology.




Some recent Successes



West Florida Continental Shelf:

The continental shelf is the transition region
between the deep-ocean and the coastline.
Continental shelves are amongst the most

biologically productive and societally
iImportant regions of the oceans.

A coordinated program of observations and
models with applications to red tide, fisheries,



The Problem

What determines the water properties on the broad WFS, influenced by:

1) the Gulf of Mexico Loop Current,
2) local winds and heat flux, and

3) land drainage.
For instance, why do red-tides repetitively bloom, concentrate, and die

off? The circulation physics are essential since the circulation unites
nutrients with light, distributes water properties, and aggregates species.
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WES: In-situ Observations
http://comps.marine.usf.edu
http://ocgweb.marine.usf.edu
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West Florida Continental Shelf:
WEFS ROMS nested into the Global HYCOM

A regional model
(ROMS) is nested in a
global model (HYCOM).

The regional model is
forced by the deep-
ocean (through the
open boundary) and by
local winds, heat
fluxes and rivers.
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WFS: Across shelf transport in bottom Ekman layer.
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Cold, nutrient-rich water
upwells onto the shelf by the
combined effects of local
and LC forcing.
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Bottom Ekman layer currents
transport these waters
to the coast.




An Upwelling Event.

May 1998 upwelled water at Sanibel came from the Florida Big Bend

shelf break some 300 km away.

J—dcy compesite on 1298,/05/17




WES: Nowcast/Forecast Model

008-04-22 Color represents sigma-layer. Trajectory from 2008—04-22 to 2008-04-26
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Red Tide
Center for Prediction of Red tide (CPR), joint
with FWC

John Walsh
Bob Weisberg
Cindy Hell

A multidisciplinary collaboration established with
new, 5-year grants from NOAA and FWC.

An initial accomplishment: Explanation of why 2006
was a significant WFS red tide year, whereas 2007
was not —retention, versus export. An inverse
correlation exists for fish since red tide kills them.



Model simulated surface drifter trajectories:

38

36T
34r
32r
30
28T
26

24

8/6/07 and 9/6/2007

day after released on 2007/08/06

[ _ .
0 10 20 30 40 50 60 70

-90 -88 -86 -84 -82 -80 -78 -76 -74 -7e

38

36
34+
3zt
30 ¥
28
26

24+

day after released on 2007/09/06

[
0 10 20 30 40 50 60 70

-90 -88 -86 -84 -82 -80 -78 -76 -74 -72

Red tide went to the east coast in 2007; it stayed on the west coast in 2006
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Evolution of the 2005 Red Tide: Advection

toward Charlotte Harbor

Drifter movement from 2005-01-13 to 2005-02-18
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T/S modeled at the C10 location showing the stratification:
Low salinity water came from TB; not CH

Temperature at C10
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Estuaries

Estuaries are the transition regions between
the rivers and the ocean. This is where
“soclety meets the ocean.”

Applications to hurricane storm surge, fresh
water management, ....
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Estuaries: Tampa Bay circulation
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The pathways of the

The Complexity of the estuarine circulation across
estuarine circulation across the mouth of the bay:
the mid-section of the bay Red tide (in 2005) entered
through Egmont channel.
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Estuaries: Rookery and Naples Bays
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Estuaries: Rookery and Naples Bays.
_Applications to Fresh Water Management.
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Hurricanes and Storm Surge:
What may have occurred had Hurricane lvan
made landfall here instead of on the Florida/

Alabama border?



lvan Winds on approach and at Landfall
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wind speed (m/s)
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While Ivan reached category 5 in the Caribbean it was a 4
upon approach and a 3 at landfall.

Category mph knots m/s
1 74-95 64-82 33-43
2 96-110 83-95 44-49
3 111-130 96-113 50-59
4 131-155 113-135 60-70
) >155 >135 >70



Maximum IRB landfall surge relative to land at sub-domains emphasizing
St. Pete Be. (left), Old Tampa Bay (Emiddle), and Hillsborough Bay (right).
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3-D and 2-D Model Comparison
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Absolute (black) and percent (red)
differences between 3-D and 2-D
surge simulations at four
positions from the mouth to the
head of the bay. At peak surge,
the 2-D model is in error by up to
35% relative to the 3-D model with
all else the same.

This suggests that we reconsider
how storm surges are modeled.
NOAA, FEMA, and USACE
presently use 2-D models.



Ocean-Atmosphere Turbulence Modeling

urbulence in the ocean and atmosphere

nlays a major role in the balances that

determine the currents, winds and their

oroperties. Numerical models cannot

resolve these so parameterizations are
necessary.

Applications to regional weather models,
climate models, and to more esoteric

studies, ....
Boris Galperin



The ocean-Jupiter connection

L13303 GALPERIN ET AL.: ZONAL JETS ON GIANT PLANETS AND IN OCEAN L13303
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Figure 1. (a) Composite view of the banded structure of the disk of Jupiter taken by NASA’s Cassini spacecraft on
December 7, 2000 (image credit: NASA/JPL/University of Arizona); (b) zonal jets at 1000 m depth in the North Pacific
Ocean averaged over the last five years of a 58-year long computer simulation. The initial flow field was reconstructed from
the Levitus climatology; the flow evolution was dniven by the ECMWF climatological forcing. Shaded and white areas are

westward and eastward currents, respectively; the contour mterval is 2 ¢m s

Boris Galperin



The Global-Ocean

he global ocean, via its interactions with
the atmosphere, is responsible for climate.

Applications to sea level rise, ....
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Not for
navigational
purposes

Tampa Bay PORTS

Physical Oceanographic Real-Time System

Operated in collaboration with NOAA/NOS/COOPS anc
local maritime interests; funded by State and County

trust funds and local users.
\Voice: 1-866-TB-PORTS

nternet: tidesandcurrents.noaa.gov or ompl.marine.usf.edu/PORTS

Successes: Ship groundings decreased by 60%.
Benefits exceed operating costs by 25 to 50 times.

Mark Luther




